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The architecture of the ZEUS Micro Vertex Detector data acquisition system and the implementation of its
second level trigger, the ZEUS Global Track Trigger are described. Data from the vertex detectors HELIX
read-out chips, corresponding to 200k channels, are digitized by 3 crates of ADCs which perform noise and
pedestal subtraction, and data suppression and compaction. PowerPC VME board computers push cluster data
for second level trigger processing and strip data for event building via Fast and Gigabit Ethernet network
connections. Additional tracking information from the central tracking chamber and the forward straw tube
tracker are interfaced into the 12 dual CPU PC farm of the Global Track Trigger where track and vertex finding
is performed. The system is data driven at the ZEUS first level trigger rate (∼ 500Hz) and must generate a
trigger result after a mean time of 10ms.

1. Introduction

The ZEUS detector at DESY is designed to study
high energy interactions produced at the HERA e±p
collider. In the period 2000-2001, the 920 GeV proton
- 27 GeV electron collider underwent a substantial up-
grade aimed at increasing by a factor 5 the peak lumi-
nosity, corresponding to 200 pb−1 integrated luminos-
ity per year. During the upgrade shutdown, ZEUS has
been equipped with a silicon vertex detector which,
besides a general improvement and extension of the
track reconstruction, will enhance the identification
of short lived particles.

This paper describes in sections 1-8 the hardware
architecture of the Data Acquisition system and the
embedded Global Tracking Trigger (GTT). Section 9-
11 outline the software solution used. Section 12 de-
scribes the trigger algorithm. Performance and Out-
look are reviewed in sections 13 and 14.

2. Detector Layout

The Micro Vertex Detector (MVD) consists of a
barrel section with three double layers of silicon sen-
sors surrounding the beampipe and four wheels in the
forward, outgoing proton, direction. Longitudinal and
transversal views of the detector with respect to the
beam line are shown in Fig. 1.

The sensors are single sided and made of high-
resistivity (3 − 6 kΩ cm) 320 µm thick n-type silicon
into which p+ strips, 12 µm wide and with a 20 µm
pitch, are implanted. The signal is read out via AC
coupling of 14 µm strips placed at a pitch of 120 µm.
The rear side consists of a thick n+ diffusion. Test
beam results have shown that, using capacitive charge
sharing, a resolution up to 8 µm can be obtained for
tracks perpendicular to the sensor.

In the barrel region two consecutive sensors of
square shape (60×60 mm), with orthogonal strips, are
glued and electrically connected together via a copper

trace etched on 50 µm thick Upilex foil. The con-
nection of the sensor assembly to the read-out hybrid
also uses Upilex foil. This structure with a mirror one
having perpendicular strip orientation forms a barrel
module with 2048 read-out strips or 1024 channels.
Five modules are mounted on a carbon fiber ladder
that provides the required stiffness and support for
the cooling pipes, cabling and slow control sensors.

The forward section consists of four wheels, each
made of two parallel layers of 14 silicon sensors of
same type as the barrel section but with a trape-
zoidal shape and 480 read-out channels. Two sensors
mounted behind each other form a forward segment
and provide a two coordinate measurement via strips
tilted by 180◦/14 in opposite directions. A more de-
tailed description of the detector layout and of the
silicon sensors can be found in [1].

3. The MVD Front-end and Read-out
Electronics

The read-out of the 207,360 channels is performed
by the HELIX 128-3.0 front-end chip [2], a 0.8 µm
CMOS chip specifically designed for the HERA envi-
ronment. Each of the 128 channels is equipped with a
preamplifier, a shaper and an analog 136 step analog
pipeline. A pipeline read-out amplifier, a 40 MHz mul-
tiplexer and a 40 MHz current buffer form the back-
end stage of the design. The noise performance of
the chip depends on the input capacitance (C) and is
400 + 40· C [pF] equivalent noise charge (ENC). The
bias settings and various other parameters of the ana-
log read-out can be finely adjusted to optimize the
system to the detector input characteristics and cor-
rect for radiation damage effects. Irradiation tests of
the HELIX read-out have been performed and indicate
that a total dose of 300 kRads can be received before
degrading the performance. The anticipated dose of
10-20 kRads per year at HERA will allow more than
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(a) (b) (c)Forward MVD Barrel MVD

Figure 1: Transversal view with respect to the beam line of the forward (a) and the barrel sections (c) and longitudinal
view (b) of the complete detector.

the 5 years of operation foreseen.
During operation the power dissipation of the HELIX

is 2mW per channel while the power dissipation in the
silicon sensors is negligible.

The bias setting and register programming as well
as the clock, trigger and test pulse synchronization,
are performed via a serial interface driven by custom
designed 6U VME driver boards. Eight chips belong-
ing to the same barrel module or the same forward
segment are connected together in a programmable
failsafe token ring1 and read out via a single digitiza-
tion channel.

The analog serialized output data are sent through
passive copper links to dedicated 10 bit ADC VME
embedded modules [3]. At the input to the ADC
module the signal range is 0-2V corresponding to 0-
10 minimum ionizing particle. The ADC system per-
forms common mode noise and pedestal subtraction
and writes data into strip or cluster cyclic event data
buffers. The strip buffer contains either raw or strip
data where an energy threshold cut is applied. The
cluster buffer contains information from groups of con-
tiguous strips (center value, total energy, first and last
strips, etc.); a cut can be applied on the total energy
and dead or hot channels can be masked. Cluster data
is used for triggering purposes and strip/raw data for
event builder read-out. The ADC system has been
implemented as a 9U single width VME board each
with 8 analogue inputs. The total of 206 tokens are
distributed in three VME crates: upper-barrel, lower-
barrel and wheels.

The HELIX front-end and ADCs are controlled by
the clock-and-control system. This consists of a single
master with three ADC crate slaves and the HELIX-
driver system. The clock-and-control system provides
the interfaces between the ZEUS Global First Level
Trigger (GFLT), the run control system, the ADC

1 By providing 2 inputs and 2 output connection lines from
each chip to its neighbours, the failsafe token ring, allows any
subchain with not more than one consecutive faulty chips to
be read out. This reduces the impact of faulty chips on the
number of channels read out per chain.

crates and the front-end chips. The HELIX-driver
boards are used by the run control to configure the
system and by the master to propagate trigger ac-
cepts to the HELIX which outputs the analogue sig-
nal with its own scheduling after receiving the trig-
ger. The system is free running, the ADC modules
inhibiting the trigger (busy) when the data buffer full
condition occurs. The ADC system performs several
checks to ensure correct event processing. The length
of the input data is checked for its correspondence to
the configured number of data strips expected. The
cell number is decoded from trailer data to identify
pipeline jumps. Data arrival times are measured with
respect to the trigger timing. Error conditions are
written into the output buffers and fatal errors can
assert a master error blocking the trigger.

The ADC read-out is performed via VME PowerPC
boards running LynxOS 3.01 and a dedicated software
library [4]. The decision to use Motorola PowerPC
read-out CPUs was made in 1999 after feasibility stud-
ies on the VME and network data transfer bandwidth
and latency measurements. The use of LynxOS, at
that time, was essential as it provided a UNIX envi-
ronment with a realtime kernel. Priority scheduling
of the interrupt handling, VME data read-out via in-
dependent DMA and network transfer task pipeline
were required to reach the necessary performance.

4. The ZEUS Data Acquisition System

The ZEUS data acquisition system [5] is based on
a three level trigger. Because of the HERA bunch
crossing rate of 10.4 MHz, i.e. 96 ns between consec-
utive interactions, the experiment is required to use
a pipelined read-out design. The GFLT, based on a
reduced set of information from the detector compo-
nents, is issued after 46 bunch crossings and reduces
the trigger rate to ≤ 500 Hz. Detector data, stored
in deadtime-free analog or digital pipelines, is sub-
sequently digitized, buffered and used by the Global
Second Level Trigger (GSLT). The GSLT lowers the
trigger rate to ≤70 Hz with a typical latency of 10-15
ms. For accepted events the complete detector infor-
mation is read out, merged with the other detector
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components data by the Event Builder (EVB) and
sent to the Third Level Trigger (TLT) computer farm
where event reconstruction and final online selection
are performed. In normal data taking conditions the
system runs with a deadtime < 2%.

5. The Global Tracking Trigger

The architecture of the MVD DAQ has been
strongly influenced by the development of its contri-
bution to the ZEUS trigger. As the HELIX front-end
and ADC read-out is too slow to participate to the
First Level Trigger a contribution at the second level
was targeted.

Simulation studies on data multiplicity and back-
ground have shown that the MVD data alone, pro-
viding up to 3 planes of information per track would
not be sufficient for unambiguous tracking and effi-
cient rate reduction. Combining MVD information
with the surrounding tracking detectors allowed a far
better rate reduction and tracking efficiency. These
considerations have lead to the design of the new
Global Track Trigger, a distributed computing envi-
ronment processing data from MVD, the existing Cen-
tral Tracking Detector (CTD) and the newly installed
forward Straw Tube Tracker (STT).

The CTD [6] is a cylindrical drift chamber sur-
rounding the MVD and covering the polar angle range
15◦ < θ < 164◦. It consists of 72 radial layers grouped
into 9 superlayers: the odd superlayers have axial
wires parallel to the beam axis while the even super-
layers have small angle (±5◦) stereo wires allowing de-
termination of the z position of hits. The three inner
axial layers are also equipped with z-by-timing elec-
tronics which determine the z-position of a hit from
the difference in arrival times of a pulse at both ends
of the chamber.

The STT [7] consists of 4 superlayers of straw drift
tubes of 7.75 mm inner diameter covering the polar
angle 6◦ < θ < 23◦. Each superlayer contains 2 planes
composed of 6 trapezoidal shape sectors covering the
full azimuthal angle. A sector consists of 3 vertical
layers of straw tubes oriented in the azimuthal direc-
tion and providing an accurate measurement of the
radial coordinate of the tracks. The STT superlay-
ers are hosted in groups of two between plane 1 and
2 and plane 3 and 4 of the existing ZEUS Transition
Radiation Detector.

In the design of the DAQ and GTT system, the pre-
ferred choice has been to use, whenever possible, com-
mercial off the shelf equipment easily upgradeable and
maintainable. After investigation of the performance
achievable in terms of data throughput, process la-
tency and performance, a solution based on a farm of
standard PCs connected via a Fast/Gigabit Ethernet
network has been chosen.

The final hardware implementation of the MVD
DAQ and the GTT systems is shown in Fig.2. In
table I the hardware characteristics are listed.

On GFLT accept data is transferred from the silicon
detector HELIX read-out chip pipelines to ∼30 ADC
boards where data is digitized and stored in strip and
cluster FIFO buffers. On completion of digitization
a VME interrupt is generated and the cluster data is
read out, via VMEbus, by a read-out CPU (Motorola
MVME 2400 PowerPC/LynxOS) and sent to a GTT
reconstruction environment. The GTT result is then
forwarded to the GSLT interface hosted in another
VME system. If the event is accepted at GSLT the
complete read-out of the strip/raw data from the 3
MVD crates together with the complete GTT output
is sent to the event building process.

6. The CTD and STT Interfaces

The CTD and STT DAQ systems, as many other
component in the ZEUS experiment, are based on
transputers 2. In order to connect these component
to the GTT, the existing transputer networks had to
be extended and an interface from the transputer pro-
tocol to the plain Ethernet network was required. At
the time of design no commercial solution with the
required flexibility and bandwidth was available; a
VMEbus system based on the same read-out CPUs
used in the MVD was commissioned [8]. As shown in
Fig. 2 a Motorola LynxOS board gathers data through
the VMEbus from NIKHEF 2TP modules [9], each
module consisting of 2 transputers and a shared triple
port memory and providing up to 8 transputer links.
Data are collected by the CPU, merged event by event
and sent through Fast Ethernet to the GTT environ-
ment.

On GFLT accept digitized pulse height and drift
time data from the 4608 CTD sense wires are read
out from custom FADC cards by 16 sector read-out
transputers. To enable the data from the CTD to
be used at the GTT 16 additional data splitting TPs
were added to the CTD DAQ. These allow data from
the FADC system to be parasitically read out from
the network whilst causing minimal disruption to the
data flow within the CTD network.

The STT, installed in 2001 and recommissioned
in 2003, replace the Transition Radiation Detector
(TRD) and has been designed to reuse the existing

2INMOS Transputers, were an advanced technological de-
velopment in the early 90’s when the ZEUS experiment was de-
signed. Provided with a 32 bit processing unit, on board mem-
ory, four 20 MHz serial links for processor interconnection and
a high level parallel programming language (OCCAM), trans-
puters were ideal for highly distributed parallel processing and
data transfer.

MOGT005

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint physics/0307006



Figure 2: Hardware implementation of thew Micro Vertex Detector Data Acquisition system and the embedded GTT.

TP based read-out system which is similar in design
to that of the CTD, using the same custom FADC and
TP electronics. The STT interface to the GTT is im-
plemented using the system developed for the CTD,
although only 8 input TP links (one 2TP module in-
stead of two) are used. The STT frontend electron-
ics digitise hits above threshold and only drift time
information is available to the GTT. The expected
STT data volume per GFLT accept is ≤4kB with a
read-out latency similar to that of the CTD. At the
time of writing the STT interface to the GTT is fully
operational although data was not transferred during
luminosity running to the GTT.

7. The GTT Environment Process

The GTT as any of the components participating
to the ZEUS second level trigger has to process events
at the average rate ≤ 500 Hz with a mean latency,
including all the data transfers, of less than 10 ms and
possibly small tails due to busy events or performance
fluctuations.

Studies of the network throughput using commer-
cial PCs and LynxOS PPC boards, indicated, after
proper tuning of TCP socket options, Fast and Gi-
gabit Ethernet to be a reliable low and stable latency

connection. Feasibility tests using a single data source
feeding 4 PCs running dummy GTT algorithms on a
round-robin basis were made with the data being im-
mediately forwarded to a dummy GSLT trigger sink.
The results in terms of rate and latency indicated the
use of TCP/IP and Fast Ethernet as acceptable. Ad-
ditionally a port of the CTD-SLT TP code to a single
CPU showed that processing speed was sufficient on
PCs to satisfy the requirements[10].

In the current system all MVD DAQ and GTT com-
ponents are connected using the TCP/IP protocol via
point-to-point Fast and Gigabit Ethernet links to net-
work switches.

The GTT environment process is a multi-threaded
program with one thread per input data source
(3×MVD, CTD, STT), one thread per trigger algo-
rithm and a time limit thread.

Typically one environment runs on each of the 12
dual CPU farm PCs. The location of the next en-
vironment to receive event data is stored in a syn-
chronized ordered list at the data interfaces. When
available the environment sends its credit to the data
source processes. The decision to use credits to con-
trol availability rather than round-robin distribution
was determined from simulation studies.

For development and performance tests a playback
capability has been provided: upon a First Level Trig-
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Number Item Purpose
1 DELL PowerEdge 6450 Quad 700MHz 1GB NFS File Server, EVB Interface and Run Control
1 DELL PowerEdge 4400 Dual 1GHz 256MB GTT Server+Credit/GSLT Decision

12 DELL PowerEdge 4400 Dual 1GHz 256MB GTT Algorithm Processing
5 Motorola MVME2400 450MHz 64MB MVD Read-out, CTD and STT Interfaces
1 Motorola MVME2700 367MHz 64MB GTT to GSLT Trigger Result Interface
1 Motorola MVME2700 367MHz 64MB LynxOS Boot Server and Development Node
4 NIKHEF-2TP VME-Transputer modules Transputer Protocol Conversion
1 Motorola MVME2700 367MHz 64MB HELIX Programming CPU
2 Intel Express 480T Fast/Giga-16Port Cu Switch Network Connections

Table I MVD Data Acquisition and Global Track Trigger Computing and Network Resources.

ger the component front-end electronics is read out
and Monte Carlo or previously saved events stored in
memory are injected into the GTT trigger chain at
the component VME interfaces, and sent through the
system exactly as for regular data.

Currently a barrel algorithm using CTD+MVD
data is implemented. A forward algorithm, using
STT+MVD is in preparation.

8. GSLT and EVB Interfaces

As the GSLT is based on a transputer network a
similar solution as for the CTD and the STT was
commissioned. The GTT result, is sent to a Motorola
PowerPC VME CPU which transfers the result, via
a 2TP module and one of its TP serial links, to the
GSLT. As the order of the GFLT number of the trig-
ger results arriving at the GSLT is strictly sequential
the interface is required to order the results from the
different GTTs before sending.

No special hardware is required to receive the GSLT
trigger decision as this is transferred via TCP. An in-
terface process forwards it to the MVD data sources
and GTT environment which processed the event. On
accept the data sources send MVD strip data and the
environment sends MVD cluster and algorithm calcu-
lation details to the EVB interface.

The EVB interface waits for MVD and GTT
data associated with GSLT accepted events which
are merged, formatted into the final ZEBRA and
ADAMO banks and sent to the EVB via TCP/IP.
A complete data quality monitor is performed on this
system.

9. The VMEbus Access Implementation

A software package for VMEbus access on Motorola
PPC boards running LynxOS has been developed.
This package exploits the features of the hardware and
the operating system to provide flexible VME memory
mapping, DMA transfer, VME interrupt and process

synchronization control in a multiuser environment.
The package consists of a library named UVMElib [4]
layered on an enhanced driver for the Tundra Uni-
verse II chip with respect to the default version dis-
tributed by LynxOS. The user performs all VME and
related operations by using the library without any di-
rect connection to the driver. Within the library, the
basic data structure type handled by the user to de-
scribe Shared Memory Segments opened both on the
internal PCI DRAM and/or on the VMEbus has six
fields: an id, an ASCII name, a size (in bytes) an ad-
dressing mode and a virtual and physical address, cor-
responding to the address the application has to use
respectively for normal read-write cycles and DMA
operations. For simplicity both internal contiguous
DRAM segments and VME ones are allocated in the
same way. Standard API are provided to support pro-
cess synchronization by waiting on or setting system
semaphores. It is possible to connect VME interrupt
handling to some UVME semaphores, making syn-
chronization to hardware interrupts, DMA cycles or
software signals equivalent. It is worth noting that
segments are uniquely identified by id or name. This
allows many processes to connect to already existing
mapped regions (up to eight for the VME space) with-
out overloading the system.

10. The VMEbus Read-out Software

The MVD read-out software, due to the strict re-
quirements imposed by the participation to the sec-
ond level trigger, has required careful design: the
DMA transfer and the VME mapping capabilities of
the Universe II bridge together with LynxOS specific
mapping of contiguous shared memories, use of sys-
tem semaphores and flexible priority scheduling have
allowed a modular design of the complex DAQ envi-
ronment. A diagram of the main processes running
on the VME computers when taking data is shown in
Fig. 3

On the ADC systems two software pipelines running
at FLT and SLT rates exist. At FLT rate the read-
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Figure 3: Block Diagram of the DAQ VME software implementation.

out program running at lower priority, is woken up on
VME interrupt as soon as data are ready on the ADC
boards. After data has been transferred via DMA
to internal memory, the network tasks, synchonized
by a semaphore and running at a higher priority, will
send the data to the GTT farm. The machine des-
tination list is independently updated by a network
receiving task driven by the GTT process sending its
credit. A similar software pipeline is available also on
the CTD and STT interfaces although currently since
the 2TP modules cannot generate a VMEbus inter-
rupt, the PowerPC polls for data every 500µs.

After the GTT processing the trigger result is sent
to the GSLT and the list of the idle processors is up-
dated.

All data transfers are performed using standard
TCP protocol. To cope with the different platforms
involved (PowerPC for the VME read-out and stan-
dard PC for the DAQ and GTT computing nodes)
the communication and synchronization is done via
short XDR encoded messages while detector data is
sent with no additional overhead.

To precisely monitor read-out latencies and network
transfer times an all purpose 6U VME board [11], pro-
viding among other features a latency/clock register,
has been developed and installed in all VME crates
and connected to a common 16µs clock bus.

Absolute timestamps and latency measurements are
available for every event and stored in the data at
several points of the data acquisition phase allowing
a complete understanding of the system performance.

In Fig. 4 the latency distributions for the cluster
read-out, the CTD data read-out, the algorithm pro-
cessing and the total GTT system latency are shown
for a typical luminosity run from 2003. A mean value
smaller than 10 ms with steep tail, compatible with
the initial requirements is obtained. The data unpack-
ing and algorithm processing latencies for the same
run are also shown. The distribution is monotonically
falling, since the algorithm runs as a single process,

and has a mean of 1.4 ms with a tail extending to
around 15 ms for busy events. A significant contribu-
tion to the total latency results from the latency of
the CTD transputer network in providing data to the
CTD interface. This time is not completely wasted
as it is used to transfer and unpack the MVD data,
usually available much earlier. For the same run, the
average number of credits, i.e. the number of GTT
idle processors, was 9 with a lower tail of less then 5
occurring for less that 1% of the events. This indi-
cates the current farm with 12 GTT nodes as more
than adequate for the present GFLT rate and total
latencies.

In Fig. 5 the GTT total latency versus the GFLT
rate is shown. The dependence of the mean overall
latency on the output rate of the GFLT, typically be-
tween 50 and 200Hz during this data taking period,
shows a strong dependence on the background condi-
tions, but always lies within 10ms.

Typical data sizes were 5 kB, 15 kB and 45 kB for
CTD, MVD cluster and MVD strip total data.

Studies using the playback system, suggest that op-
erating the GTT with GFLT output rates of up to
500Hz is achievable.

11. Computing Environment and
Software

As already described, the DAQ computing envi-
ronment consists of VME boards computers running
LynxOS and Intel PCs running Linux interconnected
via point-to-point Fast or Gigabit Ethernet via net-
work switches. The VME systems are diskless and
are booted over the network from a single, dedicated,
VME system acting as a boot server. All Linux sys-
tems are booted from local disk. In order to simplify
code usage a single DAQ file system, containing ex-
ecutable directories etc., is mounted via NFS by all

MOGT005

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint physics/0307006



Figure 4: Latency measurements from a typical
luminosity run with high GFLT rate (Nr. 44569) taken
in 2003. From top to bottom and from left to right the
MVD cluster read-out latency (time between ADC FLT
interrupt and cluster data read-out done), the CTD data
read-out completed, GTT processing completed the total
latency as measured at the GSLT. In the lowest row the
bare contribution due to data unpacking and the
processing of trigger algorithm.

participating hosts.
Standard C programming has been used through-

out the DAQ and GTT systems. A number of ROOT
based C++ GUIs have been developed to control
the DAQ system in standalone mode, view online or
archived histograms, control manually the detector
slow control system, etc.

All non read-out or trigger data messages are trans-
mitted through a hub process and not directly be-
tween processes. The hub is a multi-threaded pro-
cesses which accepts connections at a known address
and enforces a simple protocol, using XDR, which al-
low connecting processes to define themselves with
known ’public’ names or remain anonymous and set
up or cancel forwarding requests. Forwarding is based
on public name, XDR union tag and a 128 bit MD5
hash field (matches can be made less specific with *
wildcards with the public name to select groups or
all names, and 0 when used with tag and hash fields
which enables all matches).

The hub has a number of other useful features in-

Figure 5: Mean MVD/GTT Latency versus GFLT rate.

cluding retension of the most recent message based on
name-tag-hash. The principle reason for implement-
ing the hub was to reduce programming complexity
in the MVD environment where many monitoring and
logging tasks are running. There are, of course, many
tasks running in the system which do not require net-
work communication.

11.1. Run and Process Control

The MVD run control can run in either standalone
mode or as part of the ZEUS run control system.
In both cases process control, stopping and starting
tasks, is facilitated by daemon processes started at
boot time. These advertise themselves to the run
control system and identify, by name, what processes
they are capable of running, usually this is host spe-
cific. Run configuration requests from ZEUS or the
standalone run control specify a Runtype definition file
naming all the processes to be started of stopped, the
parameters they require, their required exit status etc.
The C preprocessor (cpp) is then invoked to expand
all of the definitions contained in the file (resolving
required processes, their supporting daemon, startup
parameters, etc.). The file produced corresponds to a
sequential list of process control commands required
to perform all the transitions specified. Provided no
error is encountered the run control system can then
sequence all the steps required for each transition re-
quest received. Transition requests fail if any process
fails to reach and remains in the required state.

12. The GTT Algorithm

The current implementation of the GTT algorithm,
described in detail below relies heavily upon the exist-
ing CTD-SLT program[6] and extends into the MVD
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barrel region. Unlike the CTD-SLT, it does not have
access to the CTD z-by-timing information and uses
instead the data from the CTD stereo superlayers for z
reconstruction. The algorithm consists of four stages:

• CTD segment finding,

• r-φ track finding (CTD tracks, MVD r-φ hit
matching),

• z-track finding (CTD stereo segment matching,
MVD z hit matching),

• primary vertex identification.

A second pass through one or all stages is performed
depending on the found tracks and primary vertex,
thus improving secondary vertex finding.

The segment finder operates on both axial and
stereo CTD cell data. To reduce the processing time,
left-right ambiguities, introduced by the drift time in-
formation and providing real and ghost segment can-
didates, are removed by taking the segment pointing
more closely to the beam line. This has a high effi-
ciency for identifying high pT tracks, but leads to a
charge asymmetry for lower pT tracks due to the φ
asymmetry of the CTD geometry. In order to assign
hits in a cell to a segment, starting from seed pair of
hits, the algorithm looks for linear segments consist-
ing of three or more hits, using a linear extrapolation
to identify further hits on adjacent wires until either
the cell boundary is reached or there are no more hits
consistent with the segment. The segment finder stops
looking for new segments in each cell as soon as at
most four segments have been found. This limit is
implemented since the time consumption is very sen-
sitive to the detector occupancy, which is very high in
non ep background events.

SL1

SL3

SL5

SL7

SL9

track

vertex

seed segment

Figure 6: The axial track finding algorithm.

The r-φ (axial) track finding, illustrated in Fig. 6,
searches for tracks starting with a seed segment in the

outer superlayer where the occupancy is lowest. Using
this seed segment, the expected azimuthal position of
the hit in the next innermost axial superlayer is calcu-
lated and segments consistent with this are matched
to the track. The segment last matched is then used as
a fresh seed and the matching proceeds again into the
next inner axial superlayer until at least one segment
is found in superlayer 1. Once the segment matching is
complete, the track parameters are calculated assum-
ing a circle in r-φ using a fast circle fit constrained to
the beam line to aid subsequent hit matching in the
MVD. Since the MVD hits from both the r-φ and z
sensors within an MVD half module are connected to-
gether, all hits must be considered as potential r-φ hit
candidates. Starting from the outermost MVD layer,
the φ position for the track at the layer radius is cal-
culated and ladders within a window of φ of this po-
sition are considered. All unmatched hits on these
ladders are then considered, calculating the track φ
at the radius of each hit. The closest hit on each pos-
sible ladder consistent with the track is then matched
and the track recalculated with the MVD hits having
a larger weight in the fit, allowing at most two hits
per layer (one per ladder). The algorithm then pro-
ceeds in the next innermost MVD layer until all layers
contain hits, or there are no further unmatched hits.
When recalculating the track parameters for tracks
with at least two MVD hits, the constraint that the
track must come from the beam line is removed, in
anticipation of secondary vertex finding and impact
parameter calculation.

The stereo wire derived z position z position is only
available when the r-φ position of the hit on the track
has been calculated. Since each stereo hit may be as-
signed to any track passing through the large φ range
(4 cells) spanned by the wire, the r-φ and z positions
of each hit must be calculated for each possible track
candidate within its r-φ range. For the innermost
stereo layers, this range is up to 36◦, which presents a
significant problem since the track occupancy nearer
the interaction region is high and the degree of match-
ing ambiguity which must be resolved is large.

The intersection of the track with the hit must be
calculated considering the drift displacement of the
hit with respect to the wire. This is done using an
iterative algorithm [12] and provides the φ position of
the hit matched to the track, from which the wire φ
position is obtained. The fraction of the length along
the wire is then trivially extracted to provide the z
position of the hit.

Solving the track intersections in r-φ with the stereo
wires represents one of the most costly steps in terms
of the processing latency. In order to keep the process-
ing time within acceptable limits, as with the axial hit
finding, segments are found in the stereo layers using
the same algorithm as for the axial layers, with only
the end points of the segments used for calculating the
intersections in z. This introduces some additional
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segment finding latency but significantly reduces the
time consumption in the stereo matching. Since the

track

SL8

SL6

SL4

SL2

vertex

stereo seed

Figure 7: The stereo matching algorithm.

ghost hits lie on the other side of the wire, matching
to the track yields a similar hit φ position, but dif-
ferent wire φ position and thus a different z position.
The ambiguity is resolved by using the same beam
line requirement as for the axial segments. Once the
segments have been found, the stereo matching algo-
rithm proceeds starting in the outer stereo superlayer
for this track where the spatial separation of tracks is
highest. All possible segments are considered as seed
segments. The intersection of the segment end points
with the track is calculated and fitted linearly in z and
s, the transverse path length along the track, to pro-
vide a z-track. The z-track parameters are calculated
and the track extrapolated into the next stereo layer.
The z positions of each segment in the next inner layer
are then calculated by matching to the track as above.
This continues in each successive stereo layer, with the
fit being recalculated at each stage, until a track with
segments in each stereo layer is found, or no matching
segment is found. This is illustrated in Fig. 7. To im-
prove the efficiency and resolution of track segment
matching for events where more than a single seg-
ment candidate per cell exists, the algorithm makes
additional passes to find the best candidate.

Once CTD stereo segments have been matched to
an axial track, matching to MVD z-hits is performed
in a similar way as in the r-φ case. Since MVD
r-φ positions are already known, the algorithm looks
for unmatched hits only in the corresponding z-sensors
of the modules with r-φ hits. Starting in the outer-
most MVD layer, if there are unmatched hits in the
expected z-sensor, the track intersection with the sen-
sor is calculated. All unmatched hits are then com-
pared with the predicted z-position, and the closest
hit consistent with the track is matched and the track
recalculated using a higher weight for the MVD hit in
the fit. The calculation of the track intersection and
hit matching are then successively performed in the
inner layers until either hits are found in all possible

z-sensors, or there are no hits remaining. The track-
vertex and the weight from the fit are stored for use
in the primary vertex fit.

The primary vertex algorithm is intended to make
a fast estimation of the presence of a possible vertex
and to ascertain it’s likely position in z rather than a
complete detailed reconstruction. The algorithm itself
uses a binning algorithm with overlapping 13 cm bins.
The algorithm loops over all tracks, binning the track-
vertex intersections from the z-s fit with the square
of the track weight to automatically take account of
the track quality and the better spacial resolution of
the MVD. The most probable bin (MPB) – the bin
with the highest number of weights – is found and
from the tracks in this bin an initial vertex position is
calculated using

zinitial =
∑

i∈MPB ziw
2
i∑

i∈MPB w2
i

.

All tracks within ±9 cm of this initial vertex are then
used to calculate the event vertex, again using the
weighted mean. This has shown to be very stable
against the presence of incorrectly fitted or assigned
tracks.

13. GTT Performance

The resolution and efficiency for the track and ver-
tex reconstruction have been extensively studied using
a sample of high transverse energy photoproduction
Monte Carlo events [13]. The algorithm is able to
adequately reconstruct complex event topologies with
many tracks with a high precision. For tracks found
using both CTD and MVD information, the resolution
for the track z-vertex position is found to be ∼ 500µm
for tracks within the acceptance of the MVD barrel.
The efficiency for track finding rises steeply with the
track transverse momentum, and is around 80% for
2D tracks found only in r-φ and around 50% for full
3D tracks found in both r-φ and z. The loss of ef-
ficiency when requiring z information is largely due
to the strong pattern recognition ambiguities present
from the use of the CTD stereo information and is a
strong function of the track multiplicity in the event,
falling from a maximum of around 60% at low mul-
tiplicities to as low as 35% for track multiplicities of
25, whereas the r-φ finding efficiency is approximately
constant with multiplicity, at 80%.

The vertex residual with respect to the true po-
sition found using the dijet photoproduction Monte
Carlo sample is shown in Fig. 8. The distribution is
reasonably well described by a sum of three Gaus-
sians, interpolating between a resolution of ∼ 400µm
in the central region for event vertices found predom-
inantly with tracks including MVD information, and
long tails with a resolution of around 1cm for vertices
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Figure 8: The GTT vertex residual from Monte Carlo
data reconstructed using CTD and MVD information.

found with tracks with little or no MVD information.
The efficiency rises rapidly with the track multiplicity
and approaches 100% for vertices within ±25cm of the
true vertex for events with greater than 5 tracks.

During the first commissioning stage of GTT op-
eration with real luminosity data, between October
2002 and February 2003, the HERA beam gas related
background was significantly worse than expected. To
compensate, the CTD had to be operated at only 95%
of the nominal high voltage setting leading to a small
loss in chamber performance. In addition, since beam
related background hits in the MVD were seen to bias
the reconstruction, the GTT algorithm was running
in a mode using only CTD information.

Figure 9: The online CTD-only GTT vertex.

The performance and stability of the algorithm and
GTT system as a whole, was well within the expecta-
tion during this period. The GTT event vertex avail-
able online is illustrated in Fig. 9 and clearly shows
events from ep interactions in a vertex peak within
±25 cm, on the large proton-beam gas background,
together with secondary scattering events from the
collimator at -80cm. The efficiency found using GSLT
passthrough events for reconstructing a vertex within
±25 cm of the offline vertex is found to be 84%.

14. Summary and Outlook

The MVD DAQ and GTT system have been suc-
cessfully integrated into the ZEUS experiment and

their performance (latency, stability and efficiency)
are satisfactory. 3.1 million events have been recorded
between Nov/2002 and Feb/2003.

The GTT barrel algorithm performed well during
the first commissioning luminosity running period of
the upgraded HERA machine, with high stability and
latencies well within those required by the ZEUS DAQ
and trigger systems.

The HERA machine is currently undergoing modi-
fications to the interaction region to reduce the beam
related background. The GTT is being improved with
the inclusion of a forward algorithm and the MVD
data will be enabled in the barrel algorithm to im-
prove tracking and vertex resolution and efficiency.
These modifications should be available when HERA
restarts in September 2003.
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