
BaBar Web job submission with Globus authentication and AFS access
R. J. Barlow, A. Forti, A. McNab, S. Salih
Dept. of Physics and Astronomy, The University of Manchester, Manchester, UK
D. Smith
Dept of Physics, The University of Birmingham, Birmingham, UK
T. Adye
Particle Physics Division, Rutherford Appleton Laborastory, Chilton, Didcot, UK
On behalf of the BaBar computing group

We present two versions of a grid job submission system produced for the BaBar experiment. Both use globus
job submission to process data spread across various sites, producing output which can be combined for analysis.
The problems encountered with authorisation and authentication, data location, job submission, and the input
and output sandboxes are described, as are the solutions. The total system is still some way short of the aims
of enterprises such as the EDG, but represent a significant step along the way.

1. INTRODUCTION

1.1. The BaBar experiment

BaBar is a major particle physics experiment[1]
running at the Stanford Linear Accelerator Center
(SLAC), which has already produced many billions of
events, both real and simulated, in thousands of files.
These events are processed, re-processed and selected
by standard production jobs. In addition the collab-
oration numbers 500+ physicists, many of whom are
active in running individual analysis jobs. While cer-
tainly smaller than the impending experiments at the
LHC, BaBar’s requirements approach them in several
respects, and meeting the challenge of BaBar is an
invaluable rehearsal for the challenge of the LHC.

1.2. BaBar computing

BaBar data processing creates a very high demand
for computing resources, both in storage space and
CPU time. Largely as a consequence of this, the col-
laboration has moved from a system which was ba-
sically central, with all resources being provided at
the SLAC site, to a distributed model with large and
medium sites (‘Tier A’ and ‘Tier C’) spread across the
USA and Europe.

Grid technology provides the obvious means to
make these resources available. However, unlike the
LHC experiments, the BaBar system evolved in the
pre-Grid era, and tools have to be provided which can
be used with the current system, rather than building
in Grid concepts from the start. There is also a differ-
ence in timing: we require solutions that can be used
today rather than in 2007.

We therefore set out as an exercise to see what could
be done with existing Grid technology, such as Globus
and AFS, rather than the more complete but longer
term solutions offered by the EDG [2] and similar
projects. We encountered the problems familiar to
other developers - authentication, authorisation, data

Web Browser http server

metadata
catalog

output
collector

Remote Site

Remote Site

Remote Site

Figure 1: The Demonstrator

location, the input sandbox and data retrieval - and
were able to solve them, in some cases in more than
one way.

1.3. The Demonstrator

The work went through two phases. The first was
a project to provide a Grid based BaBar system that
would act as proof of principle - the ‘Demonstrator’.
The user runs a Web browser through their desktop
or laptop, and for portability no extra software is re-
quired on this platform. The user selects the data to
be analysed according to pre-existing BaBar criteria,
and they are processed by the standard analysis job
(‘the WorkBook example’)[3]. The http server is used
for file transport. Standard ntuples are written, and
these are retrieved to the user platform where they
can be analysed using ROOT.

The Demonstrator was successfully used at eScience
events in the summer of 2002 [4].

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOAT011

SLAC-PUB-9983 *

* Work supported in part by Department of Energy contract DE--AC03--76SF00515.
ePrint cs.DC/0306084

AFS cell

user desktop

metadata
catalog

AFS
server

Remote Site

Remote Site

Remote Site

Figure 2: The gsub command

1.4. The gsub command

The second phase is a command line system - gsub,
which gives easy flexibility for the typical physics an-
alyst. The user is presumed to have the standard
BaBar environment (which enables compilation, data
location, etc) running on their platform. AFS is used
for the input and output sandboxes, and the tokens
are maintained using the gsiklog client and gsiklogd
server[5], so that gsiklogd must be running as a
server on the user home system. This places demands
on the user system but not on the remote sites - a
reasonable scenario given that the user is presumed
to want to make use of resources at the remote sites,
whereas the remote sites have no great incentive to
provide special facilities for the user.

We describe the two systems, their good features
and also those features which we hope to improve by
incorporation of the more sophisticated middleware
currently being written.

1.5. ‘BaBarGrid’

Developments involved a number of clusters of PCs
running linux. Several of these were at UK insti-
tutes (Manchester, Birmingham, Rutherford, Impe-
rial, Bristol, Liverpool, QMUL and RHUL) and com-
prised identical 40 node PC farms. Facilities at IN2P3
and Dresden were also included at some stage. There
was good communication and co-operation between
the sites and their system managers.

2. THE THREE A’S

2.1. Authentication

Standard Grid certificates were used for authentica-
tion. Sites involved had a mutual policy of recognising

those authorities accepted by the EDG and this cov-
ered the UK and French institutes. The DOE and
German authorities came into being during this pe-
riod; before they were available IN2P3 offered the fa-
cility for BaBar users to acquire a certificate.

We resisted early calls for BaBar itself to become
a CA. By maintaining a clear distinction between au-
thentication and authorisation we realised that the
proper rôle of the experimental organisation was with
the latter and not the former.

2.2. Authorisation

For an authorisation system we set up a VO (Vir-
tual Organisation) [6] for BaBar. This is maintained
at Manchester and published using the ldap system
in the usual way.

The BaBarGrid sites are available to all members
of BaBar. In some cases (Rutherford and IN2P3, the
Tier A sites) this means equal access for all members.
The Tier C university sites require a system whereby
in principle (or even in practice) priority can be given
to local members: institutes are responsible for the
cost and maintenance of their sites, and while they are
generally happy for them to be put to use by outside
members, they do not want their local machines taken
over by heavy outside use to an extent that impinges
on the productivity of locals.

A ‘member of BaBar’ has a precise definition [7].
All members have an account at SLAC, and this has
specific ‘BaBar’ authorisation on the AFS acl list. Ob-
taining this requires user signatures, consent by the
SLAC computer center, authorisation by the group
leader, and the list is kept up to date to weed out
members who have moved on elsewhere. It makes
sense to use this existing well-audited system rather
than involving users in further paperwork.

Any BaBarGrid user has also, by definition, got
a Grid Certificate. We therefore set up a system
whereby all a user has to do to be entered in the
BaBar VO is to copy the DN (Distinguished Name)
from their Grid certificate into a specifically named
file in their home area at SLAC. A cron job scans
for such files, checks the (SLAC) userid against the
AFS acl list, and forwards the DN to the VO server
at Manchester.

A second cron job runs at each participating site,
and picks up the list of authorised users from the VO.
The local system manager retain control over this job
and can readily modify it, if necessary, to remove any
known rogues. This has not been necessary and we do
not expect it to be, but it is a useful factor in making
the system acceptable to local managements.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOAT011 ePrint cs.DC/0306084

2.3. Accounting

This list is appended to the site’s gridmap file with
the generic userid prefix babar. Appending the list
has the desirable effect that if a user has a specific
account at the site, and this is put into the gridmap
file by other means, then a grid request for their DN
will take the specific account rather than the generic
one.

The generic account system [8] provides a pool of ac-
counts (babar01, babar02...babar99 or whatever)
and the user is mapped onto the first free pool ac-
count. This gives outsiders the facility to use the
site, while providing accountability: if a particular
account behaves (inadvertantly or deliberately) in an
anti-social way, the DN that was given this account is
known. Furthermore these accounts can, if desired, be
given lower priorities and privileges than local ones.

If a DN has finished with the account and then sub-
mits a subsequent request, it will be given the same
account as last time. This is useful for retrieving out-
put from jobs.

We thus have a system of authorisation and ac-
counting which scales, i.e. for M users at N sites
it requires N + M transactions rather than N × M ,
and yet which enables local users to have priority. The
system has proved easy to operate and is reliable.

3. DATA LOCATION

Data in BaBar is organised into runs, sets of approx-
imately 600,000 events recorded by the experiment.
When a run is finished the run number is incremented
and the next run started. The mapping of datafiles to
runs is many-to-one: each file contains the events from
a particular run, there are many such files containing
different processing and selection stages but for each
(complete) processing specification there is a unique
file for each run. All the necessary metadata infor-
mation can thus be contained in the dataset name,
which includes the run number, processing version,
selection program version, selection type and other
information[9].

The data catalog is maintained centrally at SLAC,
and is thus also the metadata catalog: each filename
contains a full and systematic description of what it
contains.

Each site contains a copy of the main metadata cat-
alog, updated nightly. It also contains an extra flag
for each file which is set if a local copy exists. This is
maintained by the SkimTools facilities [10] which are
used, for example, to request datasets fulfilling cer-
tain criteria to be copied from SLAC to the local site
if they do not exist.

The name of each file is the same in all sites. To
accommodate the fact that different sites have differ-
ent disk organisations, each file name starts with the

unix symbolic variable $BFROOT. This is defined in a
login script to point to an appropriate node in the file
system for that particular site.

This system does not map particularly usefully onto
the ‘replica catalog’ concept [11]. For this reason, and
because of the problems of speed and usability then
being encountered with the general ldap based replica
catalog of EDG, we decided to develop our own system
for these specific purposes.

This catalog can be queried with the skimData com-
mand, which responds to requests for lists of the files
satisfying user-defined criteria that exist locally. This
list of files is actually produced as a series of tcl com-
mands, and hence known as ‘the .tcl files’, and for
convenience in splitting a complete analysis into jobs
the skimData command is usually used to produce a
number of .tcl files. A typical analysis might involve
≈ 100 such .tcl files, each containing a list of ≈ 100
data files.

3.1. Data and the Demonstrator

For the demonstrator, use was made of the fact that
skimData can respond to requests from a remote site.
The user specifies the file selection criteria through as
simple Web interface Perl/cgi script. They then spec-
ify, through a similar script, a list of sites in priority
order. skimData is then invoked to produce .tcl files
for all runs available at the first site. It is then invoked
for the second site, using the list of runs found at the
first site as a set of runs for which information is not
desired, (a facility originally provided to avoid unde-
sirable data and hence called ‘badruns’) generating a
second set of .tcl files. This process is then repeated
for all sites specified.

3.2. Data and gsub

Although this method worked, the time taken for
remote skimData queries could be inconveniently long
(typically a few minutes). The method was therefore
improved by adding to the catalog a list of availability
at all sites. This is maintained gathering the informa-
tion by a nightly cron job. For convenience it could
be maintained centrally and copied by local sites as
it is done for the rest of the metadata. The system
this scales for N sites as 2N rather than N2. The
information is not quite up to date but this is not a
practical drawback.

This produces a single .tcl file, and an index file
which describes which runs are available at which
sites. Another Perl/cgi script is used to divide these
into .tcl files to be run at each site according to
rather simple user criteria.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOAT011 ePrint cs.DC/0306084

4. THE INPUT SANDBOX

A BaBar analysis job is performed by running a
binary which takes as its first and only argument
the name of a .tcl file. Typically it takes the form
BetaApp myAnalysis.tcl, where myAnalysis.tcl is
a small file which contains specific user instructions; it
sources one of the .tcl files produced by skimData to
locate the event data it is to run on, and also various
standard BaBar .tcl files, which in turn source other
similar .tcl files.

In the standard (pre-Grid) system, such a job is
run from a ‘working directory’ within the standard
BaBar environment, i.e. various symbolic links and
environment variables are provided to all the files that
will be needed [12]. This includes the standard BaBar
.tcl files and also some files used in processing (such
as tabulated efficiencies of Particle Identification.)

These other (non-tcl) files pose a particular prob-
lem as there is no easy way of knowing which files
will be required. An analysis may run satisfactorily
in a test job, but in production there is nothing to
stop a low probability branch in the analysis requiring
the reading of an unforeseen file. There is a collabo-
ration policy that the information contained in such
files should be moved to a central file (the conditions
database), but this is not yet complete.

It would be possible to build a system which re-
lied on such an environment also being available at
the remote site. However we felt this to be unduly
restrictive - it requires not just that a BaBar environ-
ment be available, but that the corresponding BaBar
environment, which changes from release to release,
be available. So these files (.tcl and others) must be
provided in the input sandbox for the job.

To run a job one needs

• The Event Data

• The binary

• The skimData .tcl file

• The myAnalysis.tcl file

• The other .tcl files

• The other non-.tcl files

Only the first does not present a problem. We adopted
throughout the philosophy of taking the job to the
data, rather than moving the data to the job. From
the way the .tcl files have been produced, the data
will be present and accessible with the appropriate
definition of $BFROOT.

4.1. Inputs and the demonstrator

As the demonstrator used a unique binary, this was
compiled (at SLAC) copied to a location (at Manch-
ester) where it was accessible via http. This was then

copied (sucked) to the remote site at the start of each
job.

The skimData.tcl file for the job was sent in the
input stream as part of the input generated by the
Perl/cgi script.

The myAnalysis.tcl file was then expanded, i.e.
each sourced .tcl file was replaced by the actual con-
tents, iteratively until the file was self-complete. This
was a major task to do by hand, though a facility
has now been provided to do this automatically, if
necessary. This large .tcl file was then shipped to
the remote sites in a similar manner to the binary, as
were the few but large non-tcl files the standard job
requires.

4.2. Inputs and the gsub command

In the second version we use AFS to circumvent the
input sandbox problem. The user’s working directory
must be within an AFS filesystem at a site running a
gsiklogd server. An AFS filesystem is not a problem
as many BaBar working environments use, or have
the option of using, AFS based user directories (e.g.
SLAC and RAL). The second is a requirement which
does require the co-operation of the system manager,
but there are no major problems associated with it.

At the start of each job gsiklog is run (as a client)
at the remote site. The binary is copied if it is not
available on the system, so this does not restrict the
choice of target sites. This essentially provides an AFS
token on the authority of the Grid proxy, which is used
to run the job. The job can then change directory
to the user’s working directory, and all the links are
available. All the .tcl files, and the non-tcl files, and
the binary are then available. Some initialisation of
environment variables is required but can readily be
done through standard login scripts - the only point
where care is needed is to avoid confusion between the
$BFROOT appropriate for the remote site and for the
user’s home site.

AFS access is well known to be slow and inappro-
priate for large data transfers, owing to the time taken
due to local caching etc. This is not a major drawback,
as these files are small and read only once during for
each node. The data itself is read locally, using NFS.

5. JOB SUBMISSION

5.1. Job submission for the
Demonstrator

Having set up the .tcl files, or before, the user cre-
ates a grid proxy on their local platform. This is then
uploaded into the web server. This temporarily dele-
gates the user’s identity to the web server. Using an
unmodified web browser with the user’s certificate, the

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOAT011 ePrint cs.DC/0306084

user can then instruct the server to perform remote
job submission and other operations on the grid.

The server dispatches a set of jobs, one for each of
the .tcl files. For convenience in data collection, the
set of jobs for each site is called superjob, and each
superjob starts with a job0 which copies the binary,
the expanded Babar .tcl file, and the identified other
files to the remote site making them available for the
subsequent jobs. The set of all superjobs (the hyper-
job) is the complete ‘job’ in the sense that it is often
used.

Some initialisation of environment variables is re-
quired but can readily be done through standard lo-
gin scripts - the only point where care is need is in
possible confusion between the appropriate $BFROOT
for the remote site and that for the user’s home site.

Individual jobs run at the remote sites, usually
through submission to PBS. Their progress can be
monitored and their log files retrieved, though this
is rather slow and incovenient other than for test pur-
poses.

5.2. Submitting jobs with the gsub
command

The basic BetaApp myAnalysis.tcl commands
are sent by globus-job-submit to the appropriate
remote sites (again, usually to the pbs batch sys-
tem) in a simple wrapper that does the gsiklog and
cd to the working directory. Each is preceded by a
globus-job-run -stage to provide gsiklog if nec-
essary, and other simple tasks.

For each .tcl file the user (or a simple
script) gives the command gsub <site> BetaApp
myAnalysis.tcl. There is no need to categorise them
into hyper and superjob collections.

6. OUTPUT RETRIEVAL

The log files are not of much interest. Each anal-
ysis job produces as useful output a set of ntu-
ple/histogram files in hbook (or ROOT) format. The
job jobnn typically processes a .tcl file data-nn.tcl
and produces a file output-nn.root.

6.1. Output from the Demonstrator

As each job finishes it moves its output file (stored
on the farm node) to a directory <superjobid> on
the gatekeeper for that site, and tars together all the
jobs there to form a single file. Thus as jobs start to
finish, there is always one file on the site that contains
all the presently available output data.

The user - again from a web browser running
Perl/cgi - can then invoke a job which runs on the
server and copies all the tarred superjob files back to

Figure 3: Results from The Demonstrator

a directory <hyperjobid> using grid-ftp. They are
untarred and tarred into a single directory, and re-
named as necessary so that missing/unfinished/failed
jobs do not give holes in the sequence. A link is pro-
vided to the total tarred file, and a specific MIME
type assigned. The browser has this MIME type spec-
ified such that when the link is clicked on, the file is
downloaded to the browser and untarred, and a small
ROOT program run to produce a set of histograms
from the total results.

6.2. Output from gsub

By contrast, this is absolutely trivial. AFS also pro-
vides the output sandbox. The ntuple files are written
directly back to the users work directory and can be
analysed there.

7. CONCLUSIONS

7.1. Achievements

We have found what appears to be a simple and
stable solution to the three A’s problem. The Demon-
strator has shown that simple grid tools can be used
to locate data across remote sites, run appropriate
analysis jobs, retrieve and combine the outputs.

The improved metadata catalog system and the
gsub command are providing system which has the
flexibility for real users doing real analysis in a real
experiment

7.2. Limitations

There is no resource matching (except for the data).
The user still has to make choices about what sites to
use, and balance loading appropriately.

The system is slow - each gsub takes many seconds.
For a typical analysis involving several hundred jobs a

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOAT011 ePrint cs.DC/0306084

script looping over gsub can take a barely acceptable
time to process.

A small fraction of jobs are lost. There is no book-
keeping system to take care of this, and providing one
is not a simple add in.

7.3. Outlook

The gsub command will be made available within
BaBar. Whether it is picked up and exploited by users
will be an interesting test. The globus-job-submit
commands will be replaced by edg-job-submit as
soon as the system becomes stable and supported.

Acknowledgments

The authors wish to thank Dr Jenny Williams who
expanded the .tcl file for the demonstrator.

References

[1] The BaBar Collaboration, ‘The BaBar detector’
Nucl. Instr & Meth. A479 p1 2002

[2] http://eu-datagrid.web.cern.ch/eu-datagrid

[3] http://www.slac.stanford.edu/BFROOT/www/doc/
workbook/workbook.html

[4] T. Adye, R. Barlow, A. Forti, A. McNab D.
Smith, Building the grid for BaBar, All Hands
2-4 September 2002

[5] http://marianne.in2p3.fr/datagrid/documentation/
EDG-Installation-Guide/node9 ct.html

[6] I. Foster, C. Kesselman, Steve Tuecke, The
Anatomy of the Grid: Enabling scalable Vir-
tual Organizations, International J. Supercom-
puter Applications, 15(3), 2001.

[7] http://www.slac.stanford.edu/BFROOT/www/Computing/
Offline/BaBarGrid/registration.html

[8] http://www.gridpp.ac.uk/authz/gridmapdir
[9] http://www.slac.stanford.edu/BFROOT/www/Physics/

skims/skimData.html
[10] T. Adye, A. Dorigo, A. Forti, E. Leonardi, Dis-

tributing File-based Data to Remote Sites Within
BaBar Collaboration, in Proceedings of Comput-
ing in High Energy and Nuclear Physics (CHEP
2001) 9/3/2001-9/7/2001, Beijing, China

[11] http://www.globus.org/datagrid/ replica-
catalog.html

[12] http://www.slac.stanford.edu/BFROOT/www/doc/
workbook/workdir/workdir.html

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6MOAT011 ePrint cs.DC/0306084

