

The EU DataGrid Workload Management System: towards the second major
release

G. Avellino, S. Beco, B. Cantalupo, A. Maraschini, F. Pacini, A. Terracina
DATAMAT S.p.A

S. Barale, A. Guarise, A. Werbrouck
INFN, Sezione di Torino

D. Colling
Imperial College London

F. Giacomini, E. Ronchieri
INFN, CNAF

A. Gianelle, R. Peluso, M. Sgaravatto
INFN, Sezione di Padova

D. Kouril , A. Krenek, L. Matyska, M. Mulac, J. Pospisil, M. Ruda, Z. Salvet, J. Sitera, M. Vocu
CESNET

M. Mezzadri, F. Prelz
INFN, Sezione di Milano

S. Monforte, M. Pappalardo,
INFN, Sezione di Catania

L. Salconi
INFN, Sezione di Pisa

In the first phase of the European DataGrid project, the 'workload management' package (WP1) implemented a working prototype,
providing users with an environment allowing to define and submit jobs to the Grid, and able to find and use the “best” resources for
these jobs. Application users have now been experiencing for about a year with this first release of the workload management system.
The experiences acquired, the feedback received by the user and the need to plug new components implementing new functionalities,
triggered an update of the existing architecture. A description of this revised and complemented workload management system is given.

1. INTRODUCTION

The European DataGrid project (EDG) [1] is a project
funded by the European Union, with the aim to design and
implement a Grid computing infrastructure, providing access
to large sets of distributed computational and data resources,
and suitable for the needs of widely distributed scientific
communities. In the context of the EDG project, Work
Package 1 [2] was mandated to build a suitable system for
scheduling and resource management in a Grid environment.

During the first phase of the project, a Grid Workload
Management System (WMS) was designed and
implemented (also by integrating existing technologies), and
deployed in the DataGrid testbed.

This first WMS, described in [3], has then been reviewed
and complemented. In short the objectives to review the
architecture of the WMS, discussed in this paper, were:

• to address the shortcomings that emerged in the first

DataGrid testbed, in particular some scalability and
reliability problems;

• to make it easy to plug-in new components
implementing new functionalities;

• to favor the interoperability with other Grid
frameworks.

The principles and the lessons learned when evaluating the
first system on the DataGrid testbed, were applied when
reviewing the architecture of the WMS: these are discussed
in more detail in another CHEP 2003 paper [4].

In section 2 the new Workload Management System is
presented. Section 3 describes the most significant
improvements of this new WMS with respect to the first
system, while section 4 discusses about some of the new
introduced functionalities. In section 5 it is discussed about
the foreseen future activities. Section 6 concludes the paper.

2. THE NEW WORKLOAD MANAGEMENT
SYSTEM ARCHITECTURE

The new revised Workload Management System
architecture is represented in Figure 1.

ePrint cs.DC/0306072

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOAT007

Figure 1: The new WMS architecture

As in the first release of the Workload Management

System, the User Interface (UI) is the component that allows
users to access the functionalities offered by the WMS. In
particular, via the UI, users are allowed to submit jobs,
which also includes the staging of some input files (the so-
called input sandbox files) from the file system of the UI
machine to the worker node where the execution will take
place, to control them (cancel them, monitor their status), to
retrieve the output files produced by the job (the so-called
output sandbox files), etc.

Characteristics, requirements and preferences of jobs are

specified via a Job Description Language (JDL), based on
the Condor ClassAd language [5].

The Network Server is a generic network daemon,
responsible for accepting incoming requests from the UI
(e.g. job submission, job removal), which, if valid, are then
passed to the Workload Manager. For this purpose the
Network Server uses Protocol, to check if the incoming
requests conform to the agreed protocol.

The Workload Manager is the core component of the
Workload Management System. Given a valid request, it has
to take the appropriate actions to satisfy it. To do so, it may

ePrint cs.DC/0306072

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOAT007

need support from other components, which are specific to
the different request types. All these components that offer
support to the Workload Manager provide a class whose
interface is inherited from a Helper class, which consists of a
single method (resolve()). Essentially the Helper, given a
JDL expression, returns a modified one, which represents
the output of the required action. For example, if the request
was to find a suitable resource for a job, the input JDL
expression will be the one specified by the user at
submission time, and the output will be the JDL expression
augmented with the resource choice.

The Resource Broker (RB) or MatchMaker is one of these
classes offering support to the Workload Manager. It is
responsible to perform the matchmaking between the
resource requirements (specified in the job JDL expression)
and the status of the Grid. So, given a job submission
request, the RB is responsible to find the resources that best
match the request. For this purpose the RB has to interact
with the Information Services, and also with the EDG Data
Management services to resolve data requirements. The
Resource Broker can be “decomposed” in three sub-
modules:

• a sub-module responsible for performing the

matchmaking, therefore returning all the resources
suitable for that JDL expression;

• a sub-module responsible for performing the
ranking of matches resources , therefore returning
just the “best” resource suitable for that JDL
expression;

• a sub-module implementing the chosen scheduling
strategy, easily pluggable and replaceable with
other ones implementing different scheduling
strategies.

Within this architecture, the Resource Broker is therefore

re-cast as a module, implementing the Helper interface,
which can be “plugged” and used also in frameworks other
than the EDG Workload Management System.

The Job Adapter is responsible for making the final
“touches” to the JDL expression for a job, before it is passed
to CondorG for the actual submission. So, besides preparing
the CondorG submission file, this module is also responsible
for creating the wrapper script: in fact the user job is
wrapped within a script, which is responsible for creating the
appropriate execution environment in the CE worker node
(this includes the transfer of the input and of the output
sandboxes).

CondorG [6] is the module responsible for performing the
actual job management operations (job submission, job
removal, etc.), issued on request of the Workload Manager.
The CondorG framework is exploited for various reasons:

• the reliable two-phase commit protocol used by
CondorG for job management operations, along with
other provisions to increase the scalability of the
GRAM protocol;

• the persistency: CondorG keeps a persistent (crash
proof) queue of jobs;

• the logging system: CondorG logs all the relevant
events (e.g. job started its execution, job execution
completed, etc.) concerning the managed jobs: this is
useful to increase the reliability of the whole system;

• the increased openness of the CondorG framework;
• the need for interoperability with the US Grid

projects, of which CondorG is an important
component.

The Log Monitor is responsible for “watching” the

CondorG log file, intercepting interesting events concerning
active jobs, that is events affecting the job state machine
(e.g. job done, job cancelled, etc.), and therefore triggering
appropriate actions.

For what concerns the Logging and Bookkeeping (LB)
service, it stores logging and bookkeeping information
concerning events generated by the various components of
the WMS. Using this information, the LB service keeps a
state machine view of each job. In the new WMS the LB is
essentially the only job repository information. The
dependencies between this component and the other modules
of the Workload Management System (UI accessing the LB
service to get status and logging information on jobs, and the
various modules pushing events concerning jobs to the LB)
are not represented in the figure, just for increased
simplicity.

3. IMPROVEMENTS OF THE WORKLOAD
MANAGEMENT SYSTEM

Various improvements were applied when designing the
new WMS architecture, applying the lessons learnt while
evaluating the first Workload Management System in the
EDG testbed.

First of all the duplication of persistent information related
to jobs (which was difficult to keep coherent, and which
caused various problems) was avoided. As already
mentioned, in the new WMS the LB service is essentially the
only repository for job information. The drawback is that the
reliability and scalability of this service is now much more
important and critical than in the past. To address this issue,
besides various improvements in the design and
implementation, the new WMS has been designed to make
possible relying on multiple LB servers per single WM, in
order to distribute the load among multiple servers and
therefore avoiding bottlenecks.

Another major improvement was the introduction of
various techniques and capabilities to quickly recover from
failures (e.g. process or system crashes). For example, the
communication among the various components of the new
WMS is now much more reliable, since it is done via
persistent queues implemented in the file system.

In the new Workload Management System, moreover,
monolithic long-lived processes were avoided. Instead, some
functionalities (e.g. the matchmaking) have been delegated

ePrint cs.DC/0306072

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOAT007

to pluggable modules. This also helps reducing the exposure
to memory leaks, coming not only from the EDG software,
but also from the software linked with the WMS software.

Having the RB-Matchmaker as a pluggable module also
increases the flexibility of the whole system, and the
interoperability with other Grid frameworks. In fact it is now
much more feasible to exploit the Resource Broker also
“outside” the EDG Workload Management System.
Moreover it is much more easier to implement and “plug” in
the system the module implementing the chosen scheduling
strategies, defined according to the one’s own needs and
requirements. Interoperability is also favored by the
compliance of the new WMS to the Glue schema [7] [8], the
common schema for information services agreed between
European and US High Energy and Nuclear Physics Grid
projects.

Other enhancements in design and implementation were
applied to all the services, addressing the various
shortcomings seen with the first release of the WMS.
Improvements are also due to enhancements in the
underlying software, such as the ones coming from the
Globus [9] and the Condor [10] projects.

4. NEW FUNCTIONALITY

The new Workload Management System also implements
some new functionalities, not available in the first release of
the software.

Gangmatching is one of the new functionalities provided

by the Resource Broker. It allows to take into account both
computational and storage resources information in the
matchmaking. So, for example, a user could specify that his
jobs must be executed on a computational resource “close”
to a storage system where there is “enough” free space
available.

Job checkpointing is another of these new functionalities.

Instead of addressing the classic checkpointing problem, that
is saving somewhere all the information related to a process
(process's data and stack segments, information about open
files, pending signals, CPU state, etc.) as it is addressed in
other projects (e.g. Condor [11]), the idea was providing
users with a “trivial”, or logical checkpointing service:
through a proper API, a user can save, at any moment during
the execution of a job, the state of this job. So users can
insert in the code for their applications some specific
function calls to save, from time to time, the state of their
jobs. A checkpointable application must be able, of course,
to restart itself from a previously saved state. In this “trivial”
checkpointing service a state is defined by the user, and it is
represented by a list of <var, value> pairs. They must allow
to represent exactly what that job has done until that
moment, and they must be chosen by the user in such a way
that, relying on them, the job can restart later its processing
from this intermediate state. This checkpointing framework
is useful when a job is aborted because of an “external”

problem (e.g. a machine crash), and in these cases the job is
automatically rescheduled (possibly on a resource different
than the one where the problem happened) and resubmitted.
If a state for that job was saved in its previous execution, the
job doesn't need to start from the beginning, but it can start
from the “point” corresponding to the last saved state. Since
it is not always so straightforward to “automatically” (by the
Grid middleware) understand when a job ends in an
“abnormal” way, it was also foreseen to allow the user to
retrieve an intermediate state for a job (usually the last saved
one), and explicitly resubmit the job, pointing out that it
must start using this intermediate state.

For what concerns the architecture of the checkpointing
framework, the functionality of persistently saving the state
of a job, and of retrieving a previously saved state, is
provided by the LB service.

The DataGrid Accounting System (DGAS) is another new

functionality offered by the revised WMS. It is a closed
economy based Grid accounting framework where users and
resources are seen as entities capable of exchanging “virtual
credits”. For example, when a user submits a job to a Grid
resource, the user pays to the resource a well-defined
amount of credits in order to get the job executed. Generally
a user receives the amount of credits needed to perform his
computations by the management of the research group he
belongs to. Research groups have their own Grid resources,
and these resources earn credits by executing user jobs.
These credits can then be redistributed among the users
belonging to that group.

DGAS has two main purposes:

• Accounting for Grid Users and Resources

It is possible to easily take tracks about resources
used by the various users, and about the usage of the
available Grid resources.

• Economic Brokering
Help the Resource Broker in choosing the most
suitable resource for a given job. In fact, once a valid
price setting policy has been established, the model
should lead to a state of nearly stable equilibrium able
to satisfy the needs of both resource providers and
consumers.

As first step, only the first functionality is provided by the
new Workload Management System.

The new WMS also allows the execution of interactive

jobs. This was done by integrating the Condor bypass
software [12], making available a channel for the standard
streams (stdin, stdout, stderr) from the worker node where
the exe cution takes place to a remote machine, typically the
User Interface machine, where the user can ‘control” the job.

One of the most interesting new features of the WMS is

the new extended querying capability of the Logging and
Bookkeeping service. Users are allowed to define and mark
jobs via user tags, and can then specify queries on these user

ePrint cs.DC/0306072

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOAT007

tags and on the other “standard” fields. Just as example, a
user could ask to get the status of all his jobs referring to
production ‘xyz’ (user tag) and running on resource X or on
resource Y.

 In the new Workload Management System it is also

possible to submit parallel (MPI) jobs, considering the
MPICH implementation, a widely used, freely available,
portable implementation of MPI.

Last but not least, it should be mentioned that in the new

software release, it is possible to access the Workload
Management functionalities not only via a python command
line interface (as it was the case for the first release of the
system), but also via C++ and Java API, and also via a
Graphical User Interface (GUI).

5. FUTURE WORK

The new WMS also provides hooks for some other new
functionalities that will be implemented and integrated later
(actually the development of most of this software is already
in good progress).

As already mentioned, the Economic Brokering, that is the
integration of Grid Accounting with the Resource Broker (so
that the most suitable resource for a given job is chosen
according to the current price of resources and a pre-defined
economic policy), is one of these new future capabilities of
the WMS.

Another new functionality that will be provided is the
support of inter-job dependencies, which can be defined by
Directed Acyclic Graphs (DAGs), whose nodes are program
executions (jobs), and whose arcs represent dependencies
between them. Within the Workload Management System, a
DAG will be managed by a meta-scheduler, called DAGMan
(DAG Manager), whose main purpose is to navigate the
graph, determine which nodes are free of dependencies, and
follow the execution of the corresponding jobs. DAGMan is
a product originally developed within the Condor project
[10]. DAGMan can therefore be seen as an iterator through
the nodes of a DAG, looking for free nodes (i.e. nodes
without dependencies). The corresponding jobs can then be
submitted for execution. Before doing this, it is of course
necessary to choose the resource where to submit the job,
and this will be done considering a lazy scheduling model,
that is a job (node) is bound to a resource just before that job
is ready to be submitted.

Job partitioning is another functionality that will be
introduced in the Workload Management System
framework. Job partitioning takes place when a job has to
process a large set of “independent elements”, as it often
happens in many applications, such as most HENP
applications. In these cases it may be worthwhile to
“decompose” the job into smaller sub-jobs (each one
responsible for processing just a sub-set of the original large
set of elements), in order to reduce the overall time needed
to process all these elements through “trivial” parallelisation,

and to optimize the usage of all available Grid resources.
The proposed approach is to address the job partitioning
problem in the context of the logical job checkpointing
framework described above: the processing of a job could be
described as a set of independent steps/iterations, and this
characteristic can be exploited, considering different,
simultaneous, independent sub-jobs, each one taking care of
a step or of a sub-set of s teps, and which can be executed in
parallel. The partial results (that are the results of the various
sub-jobs) can be represented by job states (the final job
states of the various sub-jobs), which can then be merged
together by a job aggregator, which mu st start its execution
when the various sub-jobs have terminated their execution.

Immediate or advance reservation of resources, which can
be heterogeneous in type and implementation and
independently controlled and administered, is another new
functionality that will be supported, to allow the use of end-
to-end quality of service (QoS) services in emerging
network-based applications. The Workload Management
System will provide a generic framework to support
reservation of resources, based on concepts that have
emerged and been widely discussed in the Global Grid
Forum. In its implementation it is foreseen to address at least
computing, network and storage resources, provided that
adequate support exists from the local management systems.

6. CONCLUSIONS

The first Workload Management System, which was
implemented in the first phase of the DataGrid project, and
evaluated in the DataGrid testbed also in some quasi-
production experiment activities, has been reviewed. The
object was in particular to address some of the existing
problems and shortcomings, and to support some new
functionality. Moreover in the new WMS the hooks needed
to implement some new functionalities, to be provided later,
were implemented.

The preliminary results of the new Workload Management
System, in terms of reliability, stability and performance are
very encouraging. A more comprehensive evaluation will be
possible when real test activities performed by real users on
the large scale DataGrid testbed will be performed (at the
time of writing, the new WMS is being integrated in this
testbed).

Acknowledgments

DataGrid is a project funded by the European Commission
under contract IST-2000-25182.

We also acknowledge the national funding agencies
participating to DataGrid for their support of this work.

ePrint cs.DC/0306072

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOAT007

References

[1] Home page for the DataGrid project
 http://www.eu-datagrid.org
[2] Home page for the Grid Workload Management

Work Package of the DataGrid project
 http://www.infn.it/workload-grid
[3] DataGrid WP1 members (C. Anglano et al.),

“Integrating Grid tools to build a Computing
Resource Broker: activities of DataGrid WP1”, CHEP
2001 Conference, Beijing (p. 708 in the proceedings)

[4] DataGrid WP1 members (G. Avellino et al.), “The
first deployment of workload management services
on the EU DataGrid testbed: feedback on design and
implementation”, also presented at CHEP 2003
Conference, San Diego

[5] “Classified Advertisements” Home Page
http://www.cs.wisc.edu/condor/classad

[6] Condor-G Home Page

http://www.cs.wisc.edu/condor/condorg
[7] Home page for the Glue Schema effort

http://www.hicb.org/glue/glue-schema/schema.htm
[8] S. Andreozzi, M. Sgaravatto, C. Vistoli, “A

conceptual model of grid resources and services”,
also presented at CHEP 2003 Conference, San
Diego

[9] Home page for the Globus project
 http://www.globus.org
[10] Home page for the Condor project
 http://www.cs.wisc.edu/condor
[11] Home page for Condor checkpointing
 http://www.cs.wisc.edu/condor/checkpointing.html
[12] Home page for the Condor bypass software
 http://www.cs.wisc.edu/condor/bypass

ePrint cs.DC/0306072

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6MOAT007

