

The AliEn system, status and perspectives
P. Buncic
Institut für Kernphysik, August-Euler-Str. 6, D-60486 Frankfurt, Germany and

CERN, 1211, Geneva 23, Switzerland

A. J. Peters, P.Saiz

CERN, 1211, Geneva 23, Switzerland

In preparation of the experiment at CERN's Large Hadron Collider (LHC), the ALICE collaboration has developed AliEn, a production
environment that implements several components of the Grid paradigm needed to simulate, reconstruct and analyse data in a distributed
way. Thanks to AliEn, the computing resources of a Virtual Organization can be seen and used as a single entity – any available node
can execute jobs and access distributed datasets in a fully transparent way, wherever in the world a file or node might be. The system is
built aroun d Open Source components, uses the Web Services model and standard network protocols to implement the computing
platform that is currently being used to produce and analyse Monte Carlo data at over 30 sites on four continents. Several other HEP
experiments as well as medical projects (EU MammoGRID, INFN GP -CALMA) have expressed their interest in AliEn or some
components of it. As progress is made in the definition of Grid standards and interoperability, our aim is to interface AliEn to emerging
products from both Europe and the US. In particular, it is our intention to make AliEn services compatible with the Open Grid Services
Architecture (OGSA). The aim of this paper is to present the current AliEn architecture and outline its future developments in the light
of emerging standards.

1. INTRODUCTION

1.1. ALICE Experiment at CERN LHC

ALICE [1] is one of the four LHC (Large Hadron
Collider) experiments, currently being built at CERN,
Geneva. When the experiment starts running, it will collect
data at a rate of up to 2PB per year and probably run for 20
years while generating more than 109 data files per year in
more than 50 locations worldwide.

AliEn [2] (ALIce ENvironment) is a distributed
computing environment developed by the ALICE Offline
Project with the aim to offer the ALICE user community a
transparent access to worldwide distributed computing and
storage resources. The intention is to provide a functional
computing environment that fulfils the needs of the
experiment in the preparation phase and, at the same time,
defines a stable interface to the end users that will remain in
place for a long time, shielding the ALICE core software
from inevitable changes in the technologies that make
distributed computing possible. Nowadays, such
technologies are commonly associated with the Grid
computing paradigm.

Interfacing to common Grid solutions [3] has always been
one of the primary design goals of AliEn and remains the top
priority in continuing development efforts. In addition,
AliEn provides its native, fully functional Grid environment
based on a Web Services model. It has been put into
production for ALICE users at the end of 2001. AliEn is
meant to be non-intrusive, adaptive and easy to deploy in the
standard environment of large computing centres typically
found in HEP environment.

Currently, ALICE is using AliEn for the distributed
production of Monte-Carlo data, detector simulation and
reconstruction at more than 30 sites located on four
continents.

1.2. ALICE Computing Model

The core of the ALICE Computing Model is AliRoot [4],
an Object Oriented framework written in C++. It uses
directly the ROOT [5] framework for performance and
simplicity reasons. ROOT provides data persistency on the
file level, an interface to various utility libraries,
visualization, a graphical user interface, virtual Monte Carlo
and a geometrical modeller. This approach allows for fast
prototyping and development by using local files containing
one or more events, which is very much appreciated by
ALICE users and developers. The user code (simulation of
detector components and reconstruction of the events) as
well as the analysis code, which operates on the output of
the reconstruction step, has to be linked only with ROOT
libraries. In that spirit, using the AliEn C/C++ API, we have
extended the capabilities of ROOT by providing an AliEn
specific implementation for an abstract TGrid class to allow
ALICE users a transparent access to datasets on the Grid as
if they were local files. From the ROOT prompt, users can
authenticate themselves, access distributed datasets or
request the execution of their algorithms across distributed
datasets and retrieve the resulting objects in an interactive or
batch session. The system takes care of job splitting and
execution and tries to optimize network traffic. When
required, the datasets can be replicated and cached. The
result of each job is optionally validated and the final output
from many concurrent jobs is merged together and presented
to the user as a dataset in his portion (directory) of the global
logical file namespace (AliEn File Catalogue). The system
keeps track of the basic provenance of each executed job or
file transfer.

1.3. Use Cases

In a typical HEP experiment, during preparation and
running phase, large-scale simulation must be carried out
involving a large portion of the available computing

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.DC/0306067MOAT004

resources. The simulation of ALICE events has a few
specific requirements (it takes up to 24h on a 1GHz CPU to
perform a detailed simulation of the detector response and
the resulting output file is up to 2 GB) but the overall
requirements are compatible with the use cases of other LHC
experiments as described in the HEPCAL [6] document. In
broad terms, these use cases deal with simulation and
reconstruction, event mixing and analysis and all of them are
addressed in the AliEn Grid implementation. With the
exception of the analysis use case, which for ALICE is
obviously bound to the ROOT framework, a large-scale
simulation and reconstruction can be setup by using AliEn
without dependency on ROOT.

2. ALIEN ARCHITECTURE

2.1. Building AliEn

AliEn has been built from a large number of Open Source
components, re-using their functionality without modifying
them. All required third party packages can be installed by
using the Pacman [7] tool from the cache which can be
found at http://alien.cern.ch/cache. The installation does not
require root privileges and is entirely self-contained. If not
already installed, the AliEn installation procedure will
automatically install required third party components. At
present, Intel i386 and ia64 platforms are supported under
RedHat Linux 6.1 and higher.

The binary distributions for supported platforms can be
found at http://alien.cern.ch/dist. They are split into
packages (RPMs and tar files) according to the functionality
they provide. In the simplest case (client access to an AliEn
service) the end user has to install only the Base and Client
packages. Other available packages are: Server, Portal,
Monitor, CE (Computing Element), SE (Storage Element)
and the packages specific for a Virtual Organization.

ALIEN

 Cluster
Monitor

Process
Monitor

 Computing
Element

 Storage
Element

 FTD Informa
tion

Service

 DB
Proxy

 Logger
Authe

n

CPU
Server

 Web
Portal

 RB

User
Application

(C/C++)

AliEn-Bas
e

RPM

AliEn-Clie
n t

RPM

AliEn-Por
ta l

RPM

AliEn-SE

RPM

AliEn-CE

RPMAliEn-Ser
ver

RPM

AliEn-Alic
e

RPM

API

C/C++

Web of Services

.rpm/.tar
Modules & Libraries

Figure 1: AliEn Components and Services

Once the components are installed and a Virtual
Organization is configured, a number of AliEn Web Services
at central and remote sites must be started in order to create
a Web of collaborating services that together constitute the
AliEn Grid.

Out of a total of 3M lines of code, only 1% corresponds to
native AliEn code while 99% of the code has been imported
in form of Open Source components. This made the
development fast and allowed the preliminary version of the
system to be in production only six months after the start of
its developments.

(…
)

D
B

I

D
B

DRDBMS
(MySQL)

LDAP

V.O
.

Packages
&

Com
m

ands

PerlCore

PerlM
odules

External
Libraries

File & M
etadata

Catalogue

S
O
A
P/X

M
L

CE

SE

Logger

Database
Proxy

Authentication

RB

U
ser Interface

A
D

B
I

Config
M

gr
Package

M
gr

Web
Portal

U
ser

A
pplication

A
PI (C/C++/perl)

CLI

GUI

AliEn Core Components & services InterfacesExternal software

Low level High level

FS

Figure 2: The architecture of AliEn - building blocks

The building blocks of AliEn can be grouped into three
major categories: low-level external software components,
AliEn core components and services and high-level user
interfaces. In the following section the details of the
components in each of these categories will be presented.

2.2. External Software

2.2.1. Perl Core and Modules

The principal reason for using the perl [8] scripting

language has been the availability of a large number of re -
usable Open Source modules [9] which provide very
complete cryptography support, implement a full featured
SOAP [10] client and server platform and offer an easy
integration with the Web for control and reporting. At
present, AliEn is using around 170 external components,
most of them perl modules but also third party Open Source
packages and libraries on which these modules depend.

In particular, perl has a flexible database access module
allowing applications to use an abstract Database Interface
(DBI) and to specify a Database Driver (DBD) at run time.

2.2.2. LDAP
AliEn uses a hierarchical database (LDAP – Lightweight

Directory Access Protocol) to describe the static
configuration for each Virtual Organization (VO). This
includes People, Roles, Packages, Sites and Grid Partitions
as well as the description and configuration of all services on
remote sites. The code that is deployed on remote sites or
user workstations does not require any specific VO
configuration files, everything is retrieved from the LDAP
configuration server at run time thus allowing user to select
VO dynamically. At present, there are 10 AliEn VOs
configured, each one effectively implementing a standalone
Grid and running its own set of supporting services.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.DC/0306067MOAT004

2.2.3. VO Packages & Commands
Each VO has to provide the description of its specific

software in order to make it available to the AliEn Package
Manager (See 2.3.5). This can be done by extending the
default Command and Package classes in AliEn and requires
a description of all commands that users can run across the
Grid for this VO. The Commands can depend on Packages
and Packages can depend on other Packages. Each Package
knows how to prepare its run time environment and can
carry out special steps before job start as well as upon job
completion (to register job output, for example). Each
Command may have an associated validation procedure
which will verify that the command actually completed
without error.

2.3. AliEn Core Components

2.3.1. Database Interface

The backend of AliEn is a relational database or, in a
more general case, a federation of relational databases.
While this, in principle, can also be a federation of
heterogeneous databases in practice we use the MySQL
databases. To avoid linking with any specific database driver
on the client side, all connections to the databases are
channelled via a Proxy Service. The application connects to
the Proxy Service by means of a special AliEnProxy driver
so that the real database driver and libraries need to be
installed only in the place where an instance of the database
Proxy Service is running. The Proxy Service also acts as an
Authentication Service for a certificate-based authentication
(see 2.4.1).

2.3.2. File Catalogue
The File Catalogue was the first component which has

been developed and was the initial goal of the project. The
complete distributed computing environment came later as a
natural extension of the “file system” paradigm once we
realized how easily this can be done once the basic building
blocks are under control. Unlike real file systems, the File
Catalogue does not own the files; it only keeps an
association between the Logical File Name (LFN) and
(possibly more than one) Physical File Names (PFN) on a
real file or mass storage system. PFNs describe the physical
location of the files and include the access protocol (rfio,
rootd), the name of the AliEn Storage Element and the path
to the local file. The system supports file replication and
caching and will use this information when it comes to
scheduling jobs for execution. The directories and files in
the File Catalogue have privileges for owner, group and the
rest of the world. This means that every user can have
exclusive read and write privileges for his portion of the
logical file namespace (home directory).

ALICE
USERS

ALICE
SIM

Tier1

ALICE
LOCAL

|--./
| |--cern.ch/
| | | --user/
| | | |--a/
| | | | |--admin/
| | | | |
| | | | |--aliprod/
| | | |
| | | |--f/
| | | | |--fca/
| | | |
| | | |--p/
| | | | |--psaiz /
| | | | | |--as/
| | | | | |
| | | | | |--dos/
| | | | | |
| | | | | |--local/

|--simulation/
| |--2001-01/
| | |--V3.05/
| | | |--Config.C
| | | |--grun.C

| |--36/
| | |--stderr
| | |--stdin
| | |--stdout
| |
| |--37/
| | |--stderr
| | |--stdin
| | |--stdout
| |
| |--38/
| | |--stderr
| | |--stdin
| | |--stdout

| | | |
| | | | --b/
| | | | |--barbera/

/PROC

Figure 3: The hierarchy of the AliEn File Catalogue

In order to address the problem of scalability, the AliEn

File Catalogue is designed to allow each directory node in
the hierarchy to be supported by different database engines,
possibly running on different host and, in future version,
even having different internal table structures, optimized for
a particular branch.

The File Catalogue is not meant to support only regular
files – we have extended the file system paradigm and
included information about running processes in the system
(in analogy with the /proc directory on Linux systems). Each
job sent to AliEn for execution gets an unique id and a
corresponding /proc/id directory where it can register
temporary files, standard input and output as well as all job
products. In a typical production scenario, only after a
separate process has verified the output, the job products
will be renamed and registered in their final destination in
the File Catalogue.

The entries (LFNs) in the AliEn File Catalogue have an
immutable unique file id attribute that is required to support
long references (for instance in ROOT) and symbolic links.

2.3.3. Metadata Catalogue
The hierarchy of files and directories in the AliEn File

Catalogue reflects the structure of the underlying database
tables. In the simplest and default case, a new table is
associated with each directory. In analogy to a file system,
the directory table can contain entries that represent the files
or again subdirectories. Due to this internal structure, it is
possible to attach to a given directory table an arbitrary
number of additional tables, each one having a different
structure and possibly different access rights while
containing metadata information that further describes the
content of files in a given directory. This scheme is highly
granular and allows fine access control. Moreover, if similar
files are always catalogued together in the same directory
this can substantially reduce the amount of metadata that
needs to be stored in the database. In the example below, the
search will first select all tables on the basis of the file name
selection and then locate all tables that correspond to a tag

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.DC/0306067MOAT004

definition, apply the selection and finally return only the list
of LFNs for which the attribute search has been successful:

lfn:///alice/sim/2001*/V3.05/%/*.root?MonteCarlo:npart>100

While having to search over a potentially large number of

tables may seem ineffective, the overall search scope has
been greatly reduced using the file system hierarchy
paradigm and, if data are sensibly clustered and directories
are spread over multiple database servers, we could even
execute searches in parallel and effectively gain performance
while assuring scalability.

2.3.4. Configuration Manager

The Configuration Manager is responsible for discovery
and read-only interactions with the LDAP server (Section
2.2.2). It extracts all relevant configuration parameters that
apply to a particular VO in the context of a site and a
specific host. The information is kept in a cache to avoid
frequent LDAP lookups.

2.3.5. Package Manager
As mentioned in Section 2.2.3, each VO can provide the

Packages and Commands that can be subsequently executed
on AliEn Grid. Once the corresponding tar files with
bundled executables and libraries are published in the File
Catalogue and registered in a LDAP directory, the AliEn
Package Manager will install them automatically as soon as
a job becomes eligible to run on a site whose policy accepts
these jobs. While installing the package in a shared package
repository, the Package Manager will resolve the
dependencies on other packages and, taking into account
package versions, install them as well. This means that old
versions of packages can be safely removed from the shared
repository and, if these are needed again at some point later,
they will be re -installed automatically by the system. This
provides a convenient and automated way to distribute the
experiment specific software across the Grid and assures
accountability in the long term.

2.4. AliEn Services

AliEn Services play the central role in enabling AliEn as a
distributed computing environment. The user interacts with
them by exchanging SOAP messages and they constantly
exchange messages between themselves behaving like a true
Web of collaborating services. In the following section, the
most important AliEn services will be described.

2.4.1. Authentication

Client Proxy
Server

DatabaseLDAP

Request methods

List of methods

SASL Authentication
Checking if user

exists

Data Data

X509(AliEn/Globus)
PKI/RSA (ssh)
Token (AliEn)
AFS password

Server

Figure 4: The sequence diagram of AliEn authentication

The Authentication Service is responsible for checking
user’s credentials. AliEn uses the SASL [11] protocol for
authentication and implements several SASL mechanisms
(GSSAPI using Globus/GSI, AFS password, SSH key, X509
certificates and AliEn tokens)

Upon successful authentication a Proxy Service acquires
and holds the real database handle on behalf of a user and
returns a temporary access token which the user has to
present in order to re-connect to the database. The token
remains in user possession and is valid for a limited period
of time.

2.4.2. Cluster Monitor

The Cluster Monitor service runs on a remote site and acts as
a gatekeeper. It can interact with other services and provides
proxy functionality for services that are behind the firewall
or on a private network.

2.4.3. Resource Brokers
AliEn jobs use the Condor ClassAds [12] as a Job

Description Language (JDL). When users submit a job to the
system it enters into the task queue and the Resource
Broker [13] becomes responsible for it. The Broker analyses
job requirements in terms of requested input files,
requirements on execution nodes, and job output. The JDL
defines the executable, its arguments and the software
packages or data that are required by the job. The Broker can
modify the job’s JDL entry by adding or elaborating
requirements based on the detailed information it can get
from the system like the exact location of the dataset and
replicas, client and service capabilities.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.DC/0306067MOAT004

Tier0

TASK QUEUE

CPUServer
ACCT

REMOTE
SITE

RemoteQueue

ClusterMonitor

Job

1 Process
Monitor

Job

1 Process
Monitor

Job

2 Process
Monitor

Job

n Process
Monitor

ACCT

REMOTE SITE
or

ANOTHER
GRID

RemoteQueue

ClusterMonitor

AliEnServer

EDG/Globus

Broker

Authen

Logger

TransferBroker

IS

TransferOptimiser

Figure 5: The job execution model

As opposed to the traditional push architecture, AliEn uses

a pull model (Figure 5). In a push system, the broker knows
the status of all the resources in the Grid, and it submits the
job to the optimal Computing Element (CE) at a given point
in time. In a pull implementation, the Broker does not need
to maintain the status of the system. Instead, the remote
Computing Elements monitor local resources and, once they
have some shares available, they advertise themselves to the
central service (CPU Server) by presenting their own
ClassAds. The CPU Server will carry out the ClassAd
matching against the descriptions of all tasks in the queue
taking into account overall priorities and policies and, if any
matching task is found, it will be given to the CE for
execution. This results in a more robust and fault tolerant
system, as resources can come and go. However, in order to
avoid being blocked for an extended period of time, it is
important that at least some resources (Tier 1 Centres)
maintain reasonable quality of service that will guarantee the
access to locally stored datasets.

Given the weak coupling between resources and Resource
Brokers, it is possible to wrap up an entire foreign Grid as an
AliEn Computing and Storage Element [3].

2.4.4. Computing Element

The Computing Element (CE) is an interface to the local

batch system. At present, AliEn provides interfaces to LSF,
PBS, BQS, DQS, Globus and Condor. The task of a CE is to
get hold of jobs JDLs from the CPU Server, translate them
to the syntax appropriate for the local batch system syntax
and execute them. Each job is wrapped up in another Web
Service (Process Monitor) allowing users to interact with the
running job (send a signal or inspect the output). Prior to job
execution, the CE can automatically install the software
packages required by the job using the Package Manager
functionality (see 2.3.5).

2.4.5. Storage Element

The Storage Element (SE) is responsible for saving and

retrieving the files to and from the local storage. It manages
disk space for files and maintains the cache for temporary
files.

2.4.6. File Transfer

This service typically runs on the same host as the Storage

Element and provides the scheduled file transfer
functionality. The File Transfer Daemons (FTD) are
mutually authenticated using certificates and will perform
file transfer on user’s behalf using the bbftp [14] protocol.
File transfers are requested and scheduled in exactly the
same way as jobs, this time under the control of the File
Transfer Broker.

2.4.7. Optimizers

While the jobs or file transfer requests are waiting in the

task queue, the Job and Transfer Optimizers will inspect
JDLs and try to fulfil requests and resolve conflicts. This can
result in the system triggering file replication in order to
make job eligible to run on some sites to balance the overall
load on the system. Along the same lines, one can also
implement policy monitors to enforce VO policies by
altering job priorities.

2.4.8. Logger

A Logger Service provides the mechanism for all services

to report their status and error conditions. This allows Grid
manager to monitor all exceptions in the system and to take
corrective action.

2.4.9. Monitoring

The Resource Brokers do not require overall monitoring

information to carry out job or file transfer scheduling.
However, if available, this information would be useful to
various Optimizer services. We are currently planning to
deploy the MonaLisa [15] monitoring framework as a part of
the AliEn Monitor Module. It will collect the monitoring
information and publish it via Web Service for use by AliEn
Optimizers or for visualization purposes. On the longer term,
the intention is to re-use the network simulation code
originally developed for MONARC [16] and now part of
MonaLisa and extend it to cover the behaviour of the
distributed Web of services that constitute the AliEn Grid.
With this, we should be able to optimize and understand the
performance of the system and verify its scalability.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint cs.DC/0306067MOAT004

2.5. Interfaces

2.5.1. Command Line Interface and GUI

The File Catalogue provides a command line interface

similar to a UNIX file system with the most common
commands implemented. Similar functionality is provided
by the graphical user interface. Using these interfaces, it is
possible to access the catalogue, submit jobs and retrieve the
output.

2.5.2. Web Portal

AliEn provides a web portal as an alternative user

interface where one can check the status of the current and
past jobs, submit new jobs and interact with them. The web
portal offers additional functionality to ‘power’ users – Grid
administrators can check the status of all services, monitor,
start and stop them while VO administrators (production
user) can submit and manipulate bulk jobs.

2.5.3. C/C++ API

In order to gain access to AliEn at the application level,

users need an API. Besides the perl module that allows user
to use, modify or extend the interface, AliEn provides C and
C++ API. In particular, the C++ API is thread safe and we
used it to implement a fully featured file system on top of
AliEn File Catalogue as well as an implementation of the
TGrid class in ROOT to address analysis use case (see
Section 3).

2.5.4. AliEn File System

Kernel

VFS

LUFS

Kernel space User space

ftpfs

sshfs

alienfs

ftp library

ssh library

AliEn C++ API

AliEn C API

perl

Figure 6: LUFS [17] ('Linux Userland File System')

The open source project LUFS [17] ('Linux Userland File

System') offers a modular file system plug-in architecture
with a generic LUFS Virtual File System (VFS) kernel
module, which communicates with various user space file
system modules. An implementation of LUFS based on
AliEn File Catalogue (alienfs) has been built using the
thread safe AliEn C++ API [18]. To use such file system,
each user has to execute a mount command and authenticate

to the Grid. The authentication is done only once for the user
space thread and, in case the connection is broken, it is
automatically restored when required. Therefore it is
recommended to use a SSH key or proxy -certificate based
authentication method.

To provide even more flexible framework, a general gridfs
module has been developed. This module allows dynamic
loading of Grid API libraries and enables to use the same
LUFS module for various Grid platforms [18].

While scheduled transfer and file replication as described
in Section 2.4.6. are sufficient to fulfil the requirements of
distributed batch style processing, interactive analysis and
applications like the file system require instant and efficient
response in addition to Grid security.

Since analysis datasets are shared between potentially
large communities of users, it is reasonable to move away
from a point-to-point connection scheme between Storage
Elements and user application towards connections of a
cache-gateway type. In this model, application file access is
routed through distributed cache servers to allow efficient
usage of network resources. A more detailed description of
the AliEn File System and the CrossLink Cache I/O
architecture can be found in [18].

3. ANALYSIS WITH ALIEN & ROOT

As the next generation of physics experiments expects to

produce data sets of the order of PBytes per year,
conventional data processing will not be anymore sufficient
to extract the relevant physics data out of such enormous
datasets. The expected volume of data which needs to be
handled as well as the nature of worldwide collaboration
necessitates a distributed approach where data and
computing will be geographically distributed. While the
existing processing schemes using batch queues and mass
storage systems have proven in the past that large datasets
can be handled very well inside individual computer centres,
scaling this model to the global scale presents new and
formidable computing challenges.

AliEn can be used today to solve typical HEP use cases
like running simulation, reconstruction and subsequent
centrally coordinated processing steps as it was outlined
above. It is likely that a large fraction of the CPU time use in
HEP will actually be spent in executing these steps.
However, end users will be waiting for output of these
organized production steps to start a largely chaotic process
of analysis where many of them (hundreds) will be trying to
run their (possibly private) algorithms over a large subset of
distributed datasets with the aim to extract the physics
observables specific to their analysis.

In the following section we will describe how AliEn can
be coupled with ROOT to provide an analysis platform
suitable for typical HEP experiments.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint cs.DC/0306067MOAT004

3.1. AliEn as Analysis Platform

AliEn provides the two key elements important for large-

scale distributed data processing – a global file system for
data storage and the possibility to execute jobs in a
distributed environment, harvesting available CPU resources
in an optimal way. In addition, while solving the HEP
analysis use case we can take advantage of trivial
parallelization that can be achieved at the ‘physics event’
level. In the remaining part of this section an outline of
possible solutions of the analysis use case using the
combination of AliEn and ROOT will be given.

3.1.1. An Outline Analysis

As the first step, the analysis framework has to extract a

subset of the datasets from the virtual file catalogue using
metadata conditions provided by the user. The next and the
most difficult part is the splitting of the tasks according to
the location of data sets. A trade-off has to be found between
best use of available resources and minimal data movements.
Ideally jobs should be executed where the data are stored.
Since one cannot expect a uniform storage location
distribution for every subset of data, the analysis framework
has to negotiate with dedicated Grid services the balancing
between local data access and data replication.

Once the distribution is decided, the analysis framework
spawns sub-jobs. These are submitted to the Resource
Broker with precise job descriptions. The user can control
the results while and after data are processed. The
framework collects and merges available results from all
terminated sub-jobs on request.

It is desirable that once an analysis task is defined, the
corresponding analysis objects become persistent in the Grid
environment so the user can go offline and reload an
analysis task at a later date, check the status, merge current
results or resubmit the same task with modified analysis
code.

3.1.2. Adding Grid functionality to ROOT

The analysis framework used by ALICE and by most of

current HEP experiments is ROOT. To enable analysis on
the Grid using AliEn, several new classes were required.

The TAlien class, based on the abstract TGrid class,
implements the basic methods to connect and disconnect
from the Grid environment and to browse the virtual file
catalogue. TAlien uses the AliEn API for accessing and
browsing the file catalogue.

The files are handled in ROOT by the TFile class, which
provides a plug-in mechanism supporting various file access
protocols. The TAlienFile class inherits from the TFile class
and provides additional file access protocols using the
generic file access interface of the AliEn C++ API.

To submit jobs to AliEn from ROOT we need a
representation of a queue job object. TAlienJob class

encapsulates all the characteristics of an AliEn queue job
like:

• Job Identifier
• Job Requirements (JDL)
• Job Status

The TAlienJobIO class is designed to allow transparent
job processing of several files. The class opens sequentially
files given in an I/O configuration file that specifies
locations and access methods.

Finally, the TAlienAnalysis class provides the overall
steering as described in Section 3.1.1.

The user has to provide the following information for an

analysis task:

• Tag name for an analysis object.
• Name of the macro to execute.
• Name of the interpreter to use for macro execution (in

general this is ROOT, for the ALICE experiment it is
AliROOT).

• Necessary input files for the macro (like calibration
tables, cut configuration files etc.).

• Data set selection criteria
o Top level directory in the virtual file

catalogue to start metadata matching (virtual
directories can be considered already as a
pre-selection).

o Meta data selection criteria.
• Splitting hints

o Number of sub-jobs to spawn (considered
only as a guideline).

o Job distribution level (keeps jobs possibly
together in one site or disperses to as many
as possible sites).

• List of output files produced by each sub-job.

 In the next step the analysis class selects a data set from

the virtual file catalogue using the input parameters and
generates JDL and JIO (Job Input Objects) files for each
sub-job. The JDL file contains the sub-job requirements like
input and output sandbox, resource needs such as storage
and/or computing elements. The JIO file contains a list of
input objects describing the data files to process and the
mechanisms to access these files.

Once instantiated, the TAlienAnalysis object creates a
subdirectory in the user home directory in the AliEn File
Catalogue with the given tag name and registers all JDL and
JIO files in the same directory. The analysis object itself is
written into a root file that is again registered inside the same
directory.

Once the analysis is running, the user can query the status
of the spawned sub-jobs and start to retrieve results from the
sub-jobs. The ROOT output of each sub-job can be found in
the standard AliEn job output directory and is brought
automatically onto the user’s machine. The analysis class
merges all sub-job ROOT files. Histograms are summed and
ROOT trees are merged into chain objects. Once all sub-jobs

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint cs.DC/0306067MOAT004

are executed, the final result is registered in the file
catalogue.

The analysis concept as presented can be considered more
as a batch analysis with interactive capability. Since sub-jobs
are completely independent from each other and run
asynchronously, an analysis object can be created
interactively at the ROOT prompt or by submitting a job to
the Grid.

To boost the interactive aspect of the model, the user
should spawn many small jobs in order to start receiving
back results very fast: while a small fraction of the jobs will
be executed immediately, the remaining sub-jobs will wait in
the queue to be executed sequentially when the previous
bunch of jobs has finished and results are made available.

3.1.3. Interactive Analysis Facility with PROOF

and AliEn

PROOF [19] - the parallel ROOT facility - covers the

needs of interactive analysis in local cluster environment. To
enable the use of PROOF in a Grid environment, two
changes are necessary:

o Create a hierarchy of PROOF slave/master

servers.
o Use Grid (AliEn) services to facilitate job

splitting.

PROOFPROOF

USER SESSIONUSER SESSION

PROOF SLAVE SERVERSPROOF SLAVE SERVERS

Figure 7: The conventional setup of a PROOF farm.

In the conventional setup (Figure 7), PROOF slave servers

are managed by a PROOF master server, which distributes
tasks and collects results. In a multi-site setup each site
running a PROOF environment will be seen as a
SuperPROOF slave server for a SuperPROOF master server
running on the user machine. The PROOF master server has
therefore to implement the functionality of a PROOF master
server and a SuperPROOF worker server at the same time.
AliEn classes used for asynchronous analysis as described in
Section 3.1.2 can be used for task splitting in order to
provide the input data sets for each site that runs PROOF
locally.

USER SESSIONUSER SESSION

PROOFPROOF
M+SM+S

SITE ASITE A

PROOFPROOF
M+SM+S

SITE BSITE B

PROOFPROOF
M+SM+S

SITE CSITE C

SuperSuper
PROOFPROOF

SuperSuper
PROOFPROOF

MASTER MASTER

Figure 8: SuperPROOF – multi-site PROOF setup.

The SuperPROOF master server assigns these data sets to

the PROOF master server on individual sites. Since these
data sets are locally readable by all PROOF servers, the
PROOF master on each site can distribute the data sets to the
PROOF slaves in the same way like for a conventional setup
(Figure 8).

3.1.4. Enabling SuperPROOF using AliEn

In a static scenario, each site maintains a static PROOF

environment. To become a PROOF master or slave server a
farm has to run a proofd process. These daemons are always
running on dedicated machines on each site. To start a
SuperPROOF session the SuperPROOF master contacts
each PROOF master on individual sites, which start PROOF
workers on the configured nodes. The control of the proofd
processes can be responsibility of the local site or it can be
done by a dedicated AliEn service.

In a dynamic environment, once a SuperPROOF session is
started, an AliEn Grid service starts proofd processes
dynamically using dedicated queues in the site batch queue
system. This is assuring that a minimum set of proofd
processes is always running. The system can react to an
increasing number of requests for SuperPROOF sessions
with starting a higher number of proofd processes.

The static environment makes sense for sites with large
computing capabilities, where farm nodes can be dedicated
exclusively to PROOF. If a site requires an efficient
resource sharing, a dynamic environment appears to be the
best choice, since it can use locally configured job queues to
run proofd processes. These processes can be killed, if the
requests decrease or after a period of inactivity.

The SuperPROOF concept can have an important impact
during the development of the analysis algorithms. The
interactive response will simplify the work of the physicist
when processing large data sets and it will result in a higher
efficiency while prototyping the analysis code. On the other
hand the stateless layout of parallel batch analysis with
ROOT will be the method of choice to process complete
data sets with final algorithms. Scheduled jobs allow for a

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8 ePrint cs.DC/0306067MOAT004

more efficient use of resources since the system load is
predictable from the JDLs of queued jobs. In general, the
fault tolerance of a highly synchronized system like
SuperPROOF with unpredictable user behaviour is expected
to be lower than the one of an asynchronous system. While
the prototype of analysis system based on AliEn already
exists, the first prototype of SuperPROOF is foreseen for
the end of year 2003.

4. OUTLOOK

4.1. AliEn and OGSA

Open Grid Services Architecture [20] (OGSA) has been
proposed as a common foundation for future Grids. AliEn
was conceived and developed from the beginning using the
same basic technology as proposed by OGSA. This makes it
possible to implement smoothly new standards as soon as
they become commonly accepted. As an interim solution,
the MammoGrid [21] project will explore a possibility to
create the OGSA compatible front-end Grid Services as a
proxy to AliEn Web Services.

4.2. Virtual server

Egg03
- IP Address :
192.168.1.12

Egg04
- IP Address :
192.168.1.13

Virtual Server

Heartbeat

External Floating IP Address

Internal Floating IP Address

Egg01
- IP Address :
192.168.1.10

Egg02
- IP Address :
192.168.1.11

Server Pool

Load
Balancing
Mechanis

m

192.168.1.0

Serial Ports

Synchronisation

Alien Data

AliEn Data

Figure 9: AliEn Virtual Server

One of the practical problems we have encountered while
setting up the AliEn Grid service is reliability and scalability
of a central service that supports the entire Virtual
Organization (authentication service, database). The problem
is further complicated by the need to maintain the
configuration and run the services for many Virtual
Organizations while still debugging and developing the
system. The solution we found was to setup a high
availability cluster with redundant servers running the
services for different Virtual Organizations and use generic

front end services that can do dynamic and configurable
routing of SOAP/XML messages (Figure 9).

4.3. The Federation of Grids

Due to weak coupling between the resources and the
Resource Brokers in the AliEn Grid model it is possible to
imagine a hierarchical Grid structure that spans multiple
AliEn and “foreign” Grids but also includes all resources
under the direct control of top level Virtual Organization.
The connectivity lines in Figure 10 represent the
collaboration and trust relationships. In this picture the entire
foreign Grid can be represented as a single Computing and
Storage Element (albeit a potentially powerful one). In this
sense, we have constructed the AliEn-EDG interface and
tested the interoperability [3]. Along the same lines, AliEn -
AliEn interface allows creation of federation of collaborating
Grids. The resources in this picture can be still shared
between various top level Virtual Organizations according to
the local site policy so that the Grid federations can overlap
at resource level.

GRID GRID

ALICE
Virtual Org.
AliEn Grid

ALICE
Virtual Org.
AliEn Grid

Another
AliEn
Grid

Another
AliEn
Grid

Another
AliEn
Grid

Another
AliEn
Grid

Another
Virtual Org.
AliEn Grid

Another
Virtual Org.
AliEn Grid

Another
AliEn
Grid

Another
AliEn
Grid

Another
AliEn
Grid

Another
AliEn
Grid

Figure 10: The federation of collaborating Grids

However, when it comes to implementing data Grids
suitable for HEP, this kind of flexibility does not come
without price – each Virtual Organization must maintain its
own File and Metadata Catalogue.

4.4. Other projects using AliEn

Besides the ALICE experiment, several HEP experiments
and medical projects have expressed their interest in AliEn
or some components of it. In particular, AliEn is used to
provide the Grid component for MammoGRID [21] and
GPCALMA [22].

5. CONCLUSIONS

AliEn has been tested in several large-scale productions.
In the first one, during November 2001, almost six thousand
Pb+Pb events were generated. To date, many production
rounds have been completed and the number of
collaborating sites has increased to more than 30. There

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

9 ePrint cs.DC/0306067MOAT004

were up to 450 concurrently running jobs in recent
productions and overall more than 25TB of data has been
generated.

In its current state, AliEn provides sufficient functionality
to carry out typical simulation and reconstruction tasks. The
distributed analysis starting from the ROOT prompt can be
handled by transparently decomposing a complex request
into several sub-jobs, executing them and presenting the
output back to the user. A more advanced and elaborate
environment that will include joining several PROOF
clusters into a SuperPROOF cluster using the AliEn
infrastructure is currently under development.

Acknowledgments

The authors wish to thank Hewlett-Packard for supplying
the high availability servers needed to run the central AliEn
services.

References

[1] ALICE Technical Proposal for A Large Ion Collider
Experiment at the CERN LHC, CERN/LHCC/95-71,
15 December 1995

[2] P. Saiz, L. Aphecetche, P. Buncic, R. Piskac, J. -E.
Revsbech and V. Sego, AliEn – ALICE environment
on the GRID,

 Nucl. Instr. and Meth. A 502 (2003) 437-440,
http://alien.cern.ch

[3] S.Bagnasco, R.Barbera, P.Buncic, F.Carminati,
P.Cerello, P.Saiz on behalf of the ALICE
Collaboration, AliEn - EDG interoperability in
ALICE, these proceedings, TUCP005

[4] R. Brun, F. Rademakers, ROOT – An Object
Oriented Data Analysis Framework,
Nucl. Instr. and Meth. A 389 (1997) 81,
http://root.cern.ch

[5] R. Brun, P. Buncic, F.Carminati, A.Morsch,
F.Rademakers, K.Safarik.: Computing in ALICE,
Nucl. Instr. and Meth. A 502 (2003) 339-346

[6] http://lcg.web.cern.ch/LCG/SC2/RTAG4/final-
report.doc

[7] http://physics.bu.edu/~youssef/pacman/index.html
[8] http://www.perl.org
[9] http://www.cpan.org
[10] http://www.soaplite.com
[11] http://asg.web.cmu.edu/sasl/
[12] Condor Classified Advertisements,

http://www.cs.wisc.edu/condor/classad
[13] P.Saiz, P.Buncic, A.J.Peters, AliEn Resource

Brokers, these proceedings, TUCP005
[14] http://doc.in2p3.fr/bbftp/

[15] H. B. Newman, I.C. Legrand, MonALisa: A
Distributed Monitoring Service Architecture, these
proceedings, MOET001

[16] http://asg.web.cmu.edu/sasl/
[17] http://lufs.sourceforge.net/lufs/
[18] A.J.Peters, P.Buncic, P.Saiz, AliEnFS – a Linux File

System for the AliEn Grid Services, these
proceedings, THAT005

[19] M.Ballintijn, R.Brun, F.Rademakers and G.Roland,
Distributed Parallel Analysis Framework with
PROOF, these proceedings, TUCT004

[20] http://www.globus.org/ogsa
[21] R. McClatchey on behalf of the MAMMOGRID

Consortium, The MammoGrid Project Grids
Architecture, these proceedings, MOAT005

[22] P. Cerello, S. Cheram, E. Lopez Torres for the
GPCALMA Project and the ALI CE Collaboration,
Use of HEP software for medical applications, these
proceedings, MOCT007

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

10 ePrint cs.DC/0306067MOAT004

