
 
 

 
 

 

A ROOT/IO Based Software Framework for CMS 
William Tanenbaum 
FNAL, Batavia, IL 60510, USA 

The implementation of persistency in the Compact Muon Solenoid (CMS)  Software Framework uses the core I/O functionality of 
ROOT.  We will discuss the current ROOT/IO implementation, its evolution from the prior Objectivity/DB implementation,  and the 
plans and ongoing work for the conversion to “POOL”, provided by the LHC Computing Grid (LCG) persistency project. 

 

1. INTRODUCTION 

 The CMS experiment [1] is one of the four approved 
LHC experiments.   Data taking is scheduled to begin in 
2007, and will last at least ten years.  The CMS software 
and computing task [2] will be 10-1000 times larger than 
that of current HEP experiments. Therefore it is essential 
that software must be modular, flexible, and maintainable 
as well as providing high performance and quality. 

One of the technologies utilized has been a C++ based 
object oriented database management system (ODBMS).  
Originally, the specific implementation used for object 
persistency was a commercial product, Objectivity/DB [3].  
In 2001, it became apparent that Objectivity was not the 
optimal long term solution for data persistency, and that it 
was necessary to abandon Objectivity with a very short 
time scale.  A decision was  made to directly use ROOT/IO 
[4] as a component of an interim persistency 
implementation.  In the very near future, the LHC 
computing grid persistency project will provide POOL [5] 
as an implementation for persistency. 

This paper primarily covers the conversion from 
Objectivity/DB to ROOT/IO.  Also briefly discussed is the 
ongoing transition to POOL. 

2. ROOT/IO BASED COBRA 

The CMS Software Framework (COBRA), formerly 
called the CMS Analysis and Reconstruction Framework 
(CARF), is described in detail elsewhere [6].  This paper 
deals only with the low level (technology dependent) 
persistency storage management aspects of COBRA.  A 
higher level discussion of the CMS approach to persistency 
can be found elsewhere [7].  Suffice it to say that 
communication with the persistent data store is handled by 
COBRA rather than explicitly by user written simulation, 
reconstruction, or analysis packages. 

2.1. General Design of ROOT/IO COBRA 

A decision was made to minimize the dependence of 
COBRA on the persistency implementation details. As a 
result, standard STL container classes (e.g. std::vector, 
std::string) are used throughout rather than ROOT specific 
classes (e.g., TClonesArray, TString). Also, the use of the 
ClassDef() macro is kept to an absolute minimum. The 
only optional ROOT specific class that is used is TRef, the 
ROOT class supporting references to persistent objects. 

For simplicity, it was decided at this stage to use 
ROOT/IO for all persistent data, including metadata. This 
greatly standardized and simplified the conversion. Also, 
for simplicity, ROOT/IO folders, trees and branches are not 
used. 

2.2. Objectivity/DB to ROOT Conversion 

As mentioned above, the original version of COBRA 
used Objectivity/DB as its implementation of persistent 
objects.  Many Objectivity specific features (e.g. 
namescopes) were used extensively throughout COBRA.  
So pervasive was the influence of Objectivity that it was 
decided that it was not feasible to redesign COBRA to stop 
using every Objectivity specific feature  in the short time 
available to us.  Rather, where necessary, an Objectivity 
specific feature would be emulated with ROOT/IO.  In 
essence, an Objectivity emulator is implemented for those 
Objectivity capabilities that could not easily be removed or 
replaced. 

Below, we discuss the mappings from Objectivity/DB to 
ROOT/IO. 

2.2.1. The Federated Database 
An Objectivity Federated Database (a.k.a. federation) 

(class ooFDObj) is a collection of user defined databases 
and the associated schema. 

No specific ROOT/IO analogue of a federation is used. 
The absence of a file catalog or similar structure to tie 
together ROOT files is acceptable for the interim ROOT 
solution. The POOL file catalog will provide this capability 
in the future. 

2.2.2. Objectivity databases 
A ROOT/IO file (class TFile) is used in place of each 

Objectivity database (class ooDBObj), with a 1-1 
correspondence between them. 

2.2.3. Objectivity containers 
A ROOT/IO directory (class TDirectory) is used in place 

of each Objectivity container (class ooContObj). 
2.2.4. Objectivity objects 

A ROOT/IO named object (class TNamed) is used in 
place of each Objectivity persistent object (class ooObj). 
Although Objectivity objects are unnamed, it is necessary 
to name ROOT/IO objects to support persistent references. 
As the names need be unique only within a container, it 
was decided to use human-readable mnemonic names for 
the objects rather than machine generated unique object 
identifiers. This made it easier to use ROOT interactively 
to examine a file. 

ePrint cs.DB/0306034TUKT010

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1



 
 

 
 

2.2.5. Objectivity vectors and iterators 
STL vectors and iterators are used respectively in place 

of each Objectivity persistent vector (class ooVArray<T>) 
and each Objectivity iterator (class ooItr(T)). 

2.2.6. Objectivity namescopes 
Each Objectivity object or container has its own name 

space in which any other object or container may be given 
a unique name. Objectivity calls these name spaces 
“namescopes”. Objectivity supports bidirectional access to 
namescopes, i.e. a name can be accessed either through the 
scoping object or the named object. In COBRA with 
ROOT/IO, persistent objects that need to support 
namescopes do not inherit directly from TNamed. Rather, 
they inherit indirectly through an intermediate class that 
contains an STL map and an STL multimap containing the 
bidirectional namescope information. In order to support 
namescopes for containers, each container contains a keyed 
“namescope” object containing the map and multimap. 

2.2.7. Objectivity persistent references 
Objectivity supports references to persistent objects, 

containers, or databases (class ooRef(T)). These references 
are used to locate a persistent object in memory or to 
retrieve it from the persistent store if it is not in memory. 
ROOT uses the TRef class to support references to 
persistent objects. However, a TRef can only be used to 
uniquely identify an object in me mory. A TRef does not 
provide the capability to locate an object in the persistent 
store. 

In order to provide a reference that can uniquely identify 
and retrieve an object in memory or in the persistent store, 
COBRA defines a persistent class that contains a TRef and 
also the names of the ROOT/IO file, container, and object 
in the persistent store. This is why named objects (class 
TNamed) are used. 

2.2.8. Objectivity transactions 
ROOT/IO does not support atomic transactions. 

However, COBRA with ROOT/IO mimics transactions by 
keeping a record of all objects to be written, and writing 
them out at definite user-defined intervals. In addition, a 
small “master” collection object is the last object to be 
written at each interval. If a crash or other interruption 
occurs prior to the writing of the master object, other 
written or partially written objects will be overwritten 
when the run is resumed. Hence the window of 
vulnerability is limited to the interval during the writing of 
the master record. 

2.3. Scale of conversion effort 

The conversion effort was done by a single developer, 
new to COBRA, over a five month period, two months for 
coding and three months for developer debugging and 
testing. 

2.4. Performance 

The ROOT/IO framework typically uses about half the 
disk space of the Objectivity based framework. The default 
ROOT compression level (level 1) is used.  Considering 
that CMS data will be on the order of petabytes, this is a 
huge improvement. 

There is an increase of a few percent in the running time 
of event digitization production jobs due mainly to the 
overhead of data compression. 

3. POOL BASED COBRA 

There are several deficiencies to the current ROOT/IO 
based COBRA. The most important of these is the absence 
of a file catalog, making large-scale production difficult. 
Other deficiencies include the lack of a cache manager, and 
the ad-hoc solution to the problem of references to 
persistent objects. POOL [5] solves all of these problems, 
as well as decoupling COBRA from any specific 
persistency technology. The conversion of COBRA to 
POOL is currently in progress. 

Acknowledgments 

The author wishes to thank Vincenzo Innocente for his 
help in understanding COBRA, Rene Brun, Philippe Canal, 
Masaharu Goto, and Fons Rademakers for their prompt 
resolution of ROOT issues, Walter Brown for his C++ 
expertise, and Veronique Lefebure for her skill in finding 
bugs in the ROOT/IO based framework. 

Work supported by the U. S. Department of Energy. 

References 

[1] CMS-The Compact Muon Solenoid, Technical 
Proposal CERN/LHCC 94-38, LHCC/P1, CERN 
1994. 

[2] The Compact Muon Solenoid, Computing Technical 
Proposal CERN/LHC 96-45, CERN 1996. 

[3] Objectivity website http://www.objectivity.com 
[4] ROOT website-http://root.cern.ch 
[5] POOL website-http://lcgapp.cern.ch/project/persist. 

See also the presentations of D. Duellmann, M. 
Frank, and Z. Xie at this conference. 

[6] V. Innocente, CMS Software Architecture: Software 
framework, services, and persistency in high level 
trigger reconstruction and analysis CMS/IN 1999-
034 

[7] V. Innocente, An ODBMS approach to persistency 
in CMS.  Proceedings of CHEP 2000, pp 423-430. 

 

 

ePrint cs.DB/0306034TUKT010

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2


