
 
 

 
 

 

A Generic Multi-node State Monitoring Subsystem 
James A. Hamilton  
SLAC, Stanford, CA 94025, USA 

Gregory P. Dubois-Felsmann 
California Institute of Technology, CA 91125, USA 

Rainer Bartoldus  
SLAC, Stanford, CA 94025, USA 

(for the Babar Computing Group) 

The BaBar online data acquisition (DAQ) system includes approximately fifty Unix systems that collectively implement the 
level-three trigger.  These systems all run the same code.  Each of these systems has its own state, and this state is expected to 
change in response to changes in the overall DAQ system.  A specialized subsystem has been developed to initiate processing on 
this collection of systems, and to monitor them both for error conditions and to ensure that they all follow the same state 
trajectory within a specifiable period of time.  This subsystem receives start commands from the main DAQ run control system, 
and reports major coherent state changes, as well as error conditions, back to the run control system.  This state monitoring 
subsystem has the novel feature that it does not know anything about the state machines that it is monitoring, and hence does not 
introduce any fundamentally new state machine into the overall system.  This feature makes it trivially applicable to other multi-
node subsystems.  Indeed it has already found a second application beyond the level-three trigger, within the BaBar experiment. 

1. INTRODUCTION 

The BaBar experiment at SLAC ran for its first three years 
with a makeshift mechanism for starting and monitoring the 
multiple processes that comprise the level-three trigger.  
This mechanism involved running sixty remote shell 
commands, each of which created an xterm window to 
display the output of the corresponding process.  There was 
no way for the run control system to actually know the state 
of these processes.  This mechanism was not only 
inefficient, but also introduced undesirable race conditions 
into startup, and sometimes caused cleanup problems due to 
the lack of positive control in error conditions. 

To remedy this situation, a new mechanism was 
developed to start and monitor the level-three trigger farm 
and to maintain a consistent state across the multiple 
instances.  This architecture of this mechanism was made 
quite general, in that it does not depend upon the detailed 
states of the processes it monitors.  As such it can be 
described as a generic multi-node state monitoring 
subsystem.  As a result the same monitoring subsystem can 
be used in multiple similar applications involving different 
target processes with different state machines. 

2. EXISTING ONLINE STRUCTURE 

2.1. General Description 

Figure 1 is a simplified diagram of the BaBar online data 
acquisition system (DAQ) as it existed prior to July 2002. 
The major subdivisions depicted include run control, 
dataflow, detector controls and level 3 trigger.  Run control 
implements overall control and monitoring of the DAQ, and 
provides a user interface for this purpose.  Detector controls 
provides inputs for monitoring the physical status of the 
detector subsystems.  Dataflow reads the raw data from the 
detector subsystems, processes it through a variety of states, 

and delivers events to the level-three trigger for further 
processing. 

Detector

SVT

DCH

EMT

DRC

IFR

SVT

DCH

EMT

DRC

IFR

Switch

Dataflow 
Proxy

Run 
Control

data

status

= = =

Level 3 Trigger 
Processing Farm

control

Component 
Proxies

GUI

Run Control has no 
control or visibility into 

state of level 3 farm

Figure 1: Pre-existing BaBar Online Structure 

2.2. Run Control 

The work described here falls most clearly within the 
scope of the run control system, so some further description 
of that system is necessary. 

The run control system is based on the State Management 
Interface (SMI) [1] and the Distributed Information 
Management (DIM) system [2], both developed at CERN.  
SMI supports a collection of abstract state machines, 
expressed in the State Machine Language (SML).  These 
abstract state machines communicate with, and operate on, 
the outside world via “proxies”, which are also state 
machines, but whose implementation is usually expressed in 
C++ rather than SML. 

DIM provides the communication subsystem by which the 
proxies communicate with the abstract state machines of run 
control.  DIM is a relatively thin layer over TCP/IP, which 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1THGT008 ePrint cs.dc/0305065



 
 

 
 

offers a centralized name service and a robust disconnect 
and reconnect capability for failure recovery. 

3. DEFICIENCIES IN THIS SYSTEM 

Although the existing system did allow the BaBar 
experiment to take data for three years, it did have some 
deficiencies, as indicated in figure 1.  Specifically, the states 
of the level-three trigger nodes are unknown to run control.  
In addition, it is not possible for run control to reset or restart 
level-three nodes when various error conditions arise. 

For example, the dataflow system cannot proceed to the 
CONFIGURED state until level-three has reached the 
ALLOCATED state (the actual details of these states are not 
germane to this paper).  But since run control cannot see the 
ALLOCATED state, human operator intervention was 
required in order to allow the system to proceed. 

 
Similarly, it was sometimes necessary to manually login 

to individual level-three farm machines in order to clean up 
after certain kinds of system failures. 

3.1. Alternatives for Correction 

Here we describe several alternate ways to correct these 
deficiencies. 

• Use the dataflow proxy.  As can be seen from the 
figure, the dataflow proxy already communicates with 
the level-three nodes, so it is capable of performing 
the monitoring and control functions itself.  Although 
this seems like an attractive solution, it turns out that 
by the time this work was undertaken, dataflow was 
already implemented.  Because it is a rather complex 
subsystem already, it would have been potentially 
destabilizing to re-architect it to incorporate these 
additional functions. 

• A second alternative was to implement each node as a 
separate run control proxy, and express the overall 
aggregation of the states using abstract SMI objects.  
This approach was feasible, but we wanted certain 
features that were awkward to achieve within SMI.  
In particular we wanted to allow dynamic variability 
in the number of nodes that actually participated in a 
given operation.  In addition, we wanted timeouts and 
conflict detection to apply to each aggregate state 
transition. 

• These considerations prompted us to take a third 
approach.  This involved the implementation of a 
single new run control proxy, whose job is to monitor 
and control the states of the level-three farm and 
report a single resultant state back to run control. 

4. THE MULTI-NODE PROXY 

Figure 2 shows the BaBar online structure again with the 
new state monitoring proxy added.  Figure 3 shows just the 
detail of the state monitoring subsystem itself.  Here we see 
the introduction of a manager dæmon process on each farm 

node that communicates with the central proxy via the DIM 
subsystem, and with the process it manages via a Unix pipe. 

In the following description you will see that the 
architecture and implementation of the multi-node proxy are 
independent of the specifics of both BaBar run control and 
of the level-three trigger processing that it monitors. 

Detector

SVT

DCH

EMT

DRC

IFR

SVT

DCH

EMT

DRC

IFR

Switch

Dataflow 
Proxy

Run 
Control

data

status

= = =

Level 3 Trigger 
Processing Farm

control

GUI

Multi-node 
State Manager 

Proxy

GUI

Figure 2: BaBar online structure with multi-node 
state manager

 

SMI Objects Multi - node State  
Manager 

Manager  
Dæmons 

… … 

Managed 
Sub - processes 

DI
M 

Unix  
Pipe 

 
Figure 3: Detail of the Multi-node State Manager 

4.1. Manager Operation 

The goals of the central manager are as follows: 
• Accept commands from the SMI state machine (e.g. 

run control) and pass them on to the dæmons, which 
in turn use them to control the managed process. 

• Monitor the state transitions of the dæmons and report 
back a single aggregate state to the SMI state 
machine. 

• Ensure that the state transitions are consistent among 
the multiple dæmons.  If one dæmon goes to state X, 
then all of the dæmons must go to state X, and must 
not visit any other states along the way. 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2THGT008 ePrint cs.dc/0305065



 
 

 
 

 

• Ensure that dæmon state transitions are timely, both 
in response to commands, and in response to state 
changes initiated by other dæmons. 

• Report error conditions back to the SMI state 
manager.  This includes both errors detected by the 
dæmons and reported to the manager, but also dæmon 
misbehavior detected by the manager, as described 
above. 

Although the manager must report a state to the SMI state 
manager, it does not itself constitute a new state machine 
within the system.  Instead, with two exceptions, it simply 
adopts the states  of the dæmons.  This allows the same 
manager to be used with alternative sets of dæmons having 
differing state machines.  And as we will see shortly, the 
state machines of the dæmons are also easily configurable.  
This is the primary reason for applying the term 
“generalized” to the multi-node state manager. 

The two exceptions just mentioned are these: 
• The manager understands the initial, or inactive, state 

of the subsystem, which is called READY.  All of the 
dæmons must have this as their initial state as well. 

• The manager defines the state ERROR.  It enters this 
state whenever it detects misbehavior or 
disappearance of the dæmons.  It also enters this state 
whenever the dæmons report error states of their own. 

All commands from run control are passed on to the 
dæmons. However, the manager also adds its own special 
semantics to two commands: 

• START – this command establishes that there are 
sufficient dæmons available to activate the system, 
selects a subset of the available dæmons, and marks 
them as active.  They remain active until they report 
the READY state.  Subsequent commands are passed 
only to active nodes, and only active nodes are 
expected to participate in state transitions. 

• RESET – this command tells the manager to expect 
READY as the next state reported by all dæmons.  
This is typically issued as part of error recovery, but 
may be issued as an abort operation at any time.  The 
dæmons are expected to do whatever is necessary to 
return to their initial state, including terminating their 
sub-processes, and so on. 

4.2. Dæmon Operation 

As mentioned above, the dæmons are each controlled by a 
state machine, and it is these states that are reported to the 
manager and that ultimately become the states of the 
manager itself. 

The state machine of the dæmons is straightforward and 
fairly traditional.  It is based on a subsystem called the State 
Machine Framework, described in [3].  For our purposes we 
simply note that it provides for a list of states, transitions, 
and actions, and that it specified in a text file that is 
processed by the dæmon executable during initialization.  
The dæmon itself provides the list of available transitions 
and actions, which we enumerate here. 

The transitions defined by the dæmon include: 

• Commands from the manager, such as START and 
RESET, and also including network disconnect. 

• Termination status from the sub-process, 
distinguished by exit code. 

• A predefined set of events that occur within the sub-
process and are reported through the Unix pipe to the 
dæmon. 

The actions available to the state machine include starting 
a process, killing a process, cleanup after errors and shutting 
down the dæmon.  There is currently no provision for 
passing actions to the sub-process. 

4.3. State Reporting 

When a dæmon changes state, it generally reports this 
state change to the manager.  These reports also include a 
color name that can be used to display the new state in the 
manager’s GUI. 

The dæmon classifies its states into one of the following 
four types: 

• Major: states that ultimately become states of the 
manager and get reported to run control.  This 
manager state change will occur once all of the active 
dæmons have reported this state.  The READY state 
is a major state by definition.  The other major state 
are typically normal operational states, such as 
ALLOCATED, CONFIGURED and RUNNING, 
which originate in the sub-process that the dæmon is 
monitoring. 

• Minor: states that may be of interest to the operator 
but do not become states of the manager itself, and 
are not reported to run control.  These states are 
simply displayed in the manager’s GUI.  Examples of 
such states in the BaBar system are CONNECTING, 
and MAPPED. 

• Micro: transient states that are of interest only to the 
internal operation of the dæmon, and are not reported 
at all to the manager.  They are not expected to persist 
for more than a fraction of a second. 

• Error: unexpected states, such as a non-zero exit code 
from the monitored process, are reported to the 
manager as distinct states for display in the GUI.  
However, the manager treats all error states as 
equivalent, and may respond by entering its own 
single error state. 

4.4. Error Processing 

Error processing is one of the more complex and 
interesting features of the multi-node manager.  The most 
common type of error condition is the report of an error s tate 
from a dæmon.  The manager is typically configured to 
allow a certain number of these error reports before 
declaring that the manager itself is in the ERROR state.  The 
dataflow subsystem is capable of “trimming” failed level-
three trigger processes, and continuing to operate. 

In addition to error reports from the dæmons, the manager 
detects many other kinds of error condition, including: 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3THGT008 ePrint cs.dc/0305065



 
 

 
 

• Network disconnect of a dæmon.  If a dæmon node, 
or the dæmon itself crashes, or the network 
connection goes down for some reason, the dæmon 
will be marked as dead, inactive, and unavailable.  
Because it is inactive, it is not expected to participate 
in future state changes.  In other respects, however, 
this is treated as equivalent to an error state reported 
by the dæmon. 

• Transition to a conflicting state.  This condition is 
detected whenever a subset of the active dæmons 
reports state “A”, followed by a dæmon reporting 
state “B”.  This detection is complicated by the fact 
that dæmon state change sequences can occur very 
rapidly, and some dæmons may report state B after 
reporting state A, but before all other dæmons have 
reported state A.  This must be distinguished from the 
case where state B is reported without  first reporting 
A.  This latter case causes the manager to enter 
ERROR, but the early reports are simply held 
pending until the in -progress transition completes. 

• Timeout in state transition.  When the first report of a 
dæmon state change arrives while the manager is in a 
known state (i.e. all active dæmons are in the same 
state) a timer is started.  If this timer expires before all 
of the dæmons have reached the same new state, the 
manager enters the ERROR state. 

• Timeout on START and RESET commands.  
Similarly, when the main state manager issues one of 
these commands, a timer is started.  All dæmons must 
report some consistent state change before this timer 
expires. 

When the manager enters the ERROR state no further 
action is taken until a RESET command is sent from the 
main state manager (e.g. run control) to clear the error.  
During this time, dæmons may continue to operate and to 
report state changes, which are displayed but otherwise 
ignored, except that a state change to READY always marks 
a node as inactive. 

Another kind of dæmon misbehavior is that it becomes 
unresponsive, even though it is still connected.  This 
condition is detected whenever a node fails, after a timeout, 
to return to READY following a RESET command.  Such 
nodes are marked unavailable and will not participate in 
future operations. 

A final kind of misbehavior is detected when a dæmon 
reports a state transition while it is inactive.  When this 
happens, the node is marked unavailable, and the manager 
will issue a RESET command to attempt to get the node 
back to the READY state.  No overall manager error results 
from this action. 

4.5. Configurable Parameters 

The manager has several configurable parameters that can 
be set through its user interface.  These are: 

• Minimum node count – the START command in 
general will require a minimum number of dæmon 

nodes to be available in order for the start to succeed.  
If this number is not available, the manager will not 
issue the START, and will go to ERROR. 

• Maximum node count – it may be desirable in some 
cases to activate only a subset of the available nodes 
in the START command.  The unused nodes are 
simply left inactive and will not participate in the 
operation. 

• Maximum error count – when a dæmon reports an 
error, or disappears, the manager may allow operation 
to continue without entering its own ERROR state.  
The maximum error count parameter provides an 
upper bound on how many error reports will be 
tolerated before the manager enters ERROR. 

• Timeout – the manager times out both commands and 
asynchronous state transitions.  The length of the 
timeout is configurable. 

4.6. The Communication Subsystem 

The manager and dæmons use DIM as their 
communication subsystem.  What was needed was a low-
level network messaging system.  The direct use TCP/IP was 
considered.  However, DIM is already used within BaBar in 
support of the SMI-based run control system.  DIM is a 
fairly thin layer over TCP, and has some additional 
advantages. 

First, it provides a central naming service, so that the 
manager and the dæmons can establish communications 
without the need for well-known host names, IP addresses, 
or TCP/IP port numbers.  Also no network broadcast 
operations are required. 

Second, DIM provides a robust disconnect/reconnect 
mechanism that helps in the face of both network and host 
failures, as well as component restarts. 

The DIM API was not ideal for this application.  What 
was desired was something more akin to a reliable datagram 
service, or simply the read/write stream semantics provided 
by TCP.  However, it was straightforward to adapt it to our 
needs, and this slight mismatch was mo re than offset by the 
advantages mentioned above. 

The performance of DIM in this application proved to be 
more than adequate. 

5. THE MANAGER GUI 

The multi-node state manager has its own graphical user 
interface, which is implemented in TCL/TK.  It 
communicates with the manager via a Unix pipe. 

The main purpose of the GUI is to display the current 
states of all the nodes under management.  Each state has a 
distinctive color for this purpose.  The colors, like the states 
themselves, are defined by the dæmon state machine, so the 
manager has no built-in knowledge of the colors. 

Each dæmon node is displayed as a button.  The button 
displays the color of the state, as well as the state name and 
node name.  The actions defined on the buttons allow the 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4THGT008 ePrint cs.dc/0305065



 
 

 
 

 

operation to kill or restart individual dæmons, as well as 
view their output logfiles. 

The GUI also displays the overall manager state, and a 
one-line description of the most recent action leading to the 
current state. 

The main menu of the GUI allows for setting the 
configurable parameters of the manager, which are described 
above. 

Figure 4 shows an example of the user interface. 

 
Figure 4: Example of the user interface in operation 

6. A SECOND APPLICATION 

As it happens, an opportunity to test the generality of the 
multi-node state manager arose very quickly.  This second 
application is shown in figure 5.  This figure shows a portion 
of the BaBar fast monitoring subsystem.  The purpose of this 
subsystem is to collect histograms from a random sampling 
of all level-one events in the detector, in order to monitor 
data quality in real time. 

Figure 5: The Fast Monitoring Application

Run 
Control

Level 3 
Manager

…

Currently 47 nodes

Event Data

FastMon
Control

FastMon
Manager

…

Currently 15 nodes

Monitoring 
Histograms

Sampled Events

 

In order to monitor as much data as possible, multiple 
nodes are used to do the processing.  Each of these nodes 
connects to one of the level-three nodes (managed by the 
main level-three manager) to obtain its sampling of level one 
events.  We wrote a small SML program to control the 
overall operation of the fast monitoring subsystem, and this 
uses the multi-node state manager, unchanged, to control 
and monitor the individual histogram collection nodes.  The 
controlling state machine of the fast monitoring subsystem is 
also able to monitor the state of the level-three manager to 
assist in sequencing its own operations. 

7. CONCLUSIONS 

The goals of this work were to develop a subsystem to 
manage and monitor the states of multiple identical 
networked processes.  It turned out that this could be done in 
a very general way that allowed the same manager to be 
used to control different subsystems with different state 
spaces.  The result is a generalized multi-node state 
monitoring subsystem. 

The monitoring subsystem has improved both the 
performance and the robustness of the BaBar online system.  
The performance was improved mainly by reducing the time 
to start a new set of processes, which had previously 
required remote shell invocation. 

The robustness was improved in two ways.  First, certain 
race conditions were eliminated because run control could 
now determine the overall state of the level-three processing 
farm.  Second, when error conditions arise, cleanup is now 
much more reliable and predictable. 

The new state manager has been in operation since 
November 2002, at the start of a new run.  A second 
application has already been put in place, and has now been 
operational for several months. 

References 

[1] B. Franek, et. al., “SMI++ - Object oriented 
framework for designing Control Systems for HEP 
experiments”, CHEP’97, Berlin, April, 1997. 

[2] C. Gaspar, et. al., “DIM, A Portable Light Weight 
Package for Information Publishing, Data Transfer, 
and Inter-process Communication”, CHEP’00, 
Padova, February, 2000. 

[3] Alex Samuel, et. al., “State Machine and Network 
Infrastructure in the BaBar Online System”, 
CHEP’98, Chicago, September, 1998. 

 

 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5THGT008 ePrint cs.dc/0305065


