Pixel Detector Module for the BTeV Experiment at Fermilab

S. Zimmermann

Fermi National Accelerator Laboratory
Batavia, IL 60510 USA
zimmer@fnal.gov

Pixel 2002

September 9-12, 2002
Outline

- BTeV Pixel detector
- Some design constraints
- Cabling
- Pixel half detector
- Pixel module readout scheme
- Pixel module prototypes
- Conclusions
~22 million pixel channels.
• 30 pixel detector stations.
• Each pixel station consists of 48 pixel modules.
• Each pixel module consists of either 4, 5, 6, or 8 FPIX readout chips and silicon sensors.
Some Design Constraints

- High readout efficiency required – *Data is used in lowest level BTeV trigger to reconstruct tracks.*
- Cabling
- High radiation environment – *Must use rad-hard components ⇒ ASICs.*
- Inaccessible – *Motivation for designing a reliable/robust readout.*
- HDI and flex cable features –
 a) *Constrained by feature size of flex technology.*
 b) *Limited width to avoid interference with adjacent modules ⇒ need to minimize number of lines.*
 c) *Small production quantities (by industry standards)*
- Cable Bandwidth – *Limits data readout speed.*
- Cost
Cabling

- Several detectors cover forward direction between 10-300 mrad
- The volume outside this region is not instrumented.
- We can add mass to region not instrumented
- Proposal: use copper cables to control and readout the Pixel modules.
Pixel Half Station

- Modules are a sandwich of FPIX readout chips, silicon pixel sensors, and high density flex circuit (HDI).
- High density flex circuit brings power, control and data signals to/from FPIX chips.
Pixel Half Detector: Point-to-point readout

- FPIX2 → HDI → Flex cables → Feedthrough Board → 10 m twisted pair → Pixel Data Combiner Board (PDCB)
Readout: Simulations

• 1st step in design process is to understand how much data needs to be moved out of the FPIX core.

• Average core data rates for worst case module (module closest to beam) based on GEANT simulation.

• Luminosity (L): $3 \times$ nominal (nominal = 2×10^{32}/cm2/sec)

<table>
<thead>
<tr>
<th>Chip 1</th>
<th>Chip 2</th>
<th>Chip 3</th>
<th>Chip 4</th>
<th>Chip 5</th>
<th>Chip 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>664Mbps</td>
<td>443Mbps</td>
<td>187Mbps</td>
<td>84Mbps</td>
<td>45Mbps</td>
<td>35Mbps</td>
</tr>
</tbody>
</table>

Pixel Detector Module for the BTeV Experiment at Fermilab

S. Zimmermann
Readout: Design Solution – Key Features

• All signaling is low voltage differential (LVDS) – *Immune to common mode noise, easy to drive 10m, and can be driven and received by today’s FPGAs.*

• Data paths are point to point for reliability.

• Data is serialized – *Core data word is formatted then serialized to save data lines.*

• Configurable number of serializers (6, 4, 2 or 1) – *High data rate chips with 6 serializers while lower data rate chips use a few as 1 serializer.*

• Match core bandwidth to total bandwidth of serializers – *Core operating frequency depends on configuration.*

• Simple word alignment scheme for receiver.
Simulations (~3000 crossings, ~6500 hits) were run on Verilog model of FPIX core to determine minimum number of serializers while still maintaining high readout efficiency.

<table>
<thead>
<tr>
<th></th>
<th>Chip 1</th>
<th>Chip 2</th>
<th>Chip 3</th>
<th>Chip 4</th>
<th>Chip 5</th>
<th>Chip 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hits (approx.)</td>
<td>6400</td>
<td>4250</td>
<td>1700</td>
<td>800</td>
<td>450</td>
<td>350</td>
</tr>
<tr>
<td># Serializers</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Efficiency @ nominal L</td>
<td>99.7%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Efficiency @ 3x nominal L</td>
<td>98.0%</td>
<td>99.6%</td>
<td>99.6%</td>
<td>99.9%</td>
<td>100%</td>
<td>99.7%</td>
</tr>
</tbody>
</table>
Readout: Data Latch Clock and Example Waveform

- Both edges of DLCLK used by receiving FPGA to latch data.
Readout: Pre-FPIX2 LVDS Drivers

- Good quality of the 140Mbit/s eye-pattern of Pre-FPIX2 LVDS drivers.
- 50 foot flat-twisted cable.
Readout: Data Combiner Board and Pixel Module

- Xilinx Virtex II FPGA input blocks configured for LVDS input and double edge data sampling.
Pixel Module Prototypes

- Uses FPIX1
- HDI with four metal layers
- Two modules characterized:
 a) Single readout chip bump bonded to single SINTEF sensor (Indium bumps)
 b) Five readout chips with dummy sensor
Prototype: Flex Circuit

- **Dimensions:** 98.5mm x 10.25mm
- **Line width:** 35µm
- **Line to line clearance:** 35µm
- **Metal layer thickness:** 10µm
- **Number of layers:** 4
- **Via pad:** 108µm
- **Lamination:** 5µm epoxy
- **Film thickness (Apical):** 25µm

Top
- Connectors
- Wire bonding pads

Bottom
- Terminations
- H.V.
- Decoupling Caps.
Prototype: Single chip (FPIX1) bonded to SINTEF sensor

- LVDS drivers
- Connectors to DAQ

Wire bonds

Flex Circuit Readout IC Sensor
Prototype: Single chip with various threshold settings [e^{-}]

<table>
<thead>
<tr>
<th>μ_{Th}</th>
<th>σ_{Th}</th>
<th>μ_{Noise}</th>
<th>σ_{Noise}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7820</td>
<td>408</td>
<td>94</td>
<td>7.5</td>
</tr>
<tr>
<td>6529</td>
<td>386</td>
<td>111</td>
<td>11</td>
</tr>
<tr>
<td>5500</td>
<td>377</td>
<td>113</td>
<td>13</td>
</tr>
<tr>
<td>4410</td>
<td>380</td>
<td>107</td>
<td>15</td>
</tr>
<tr>
<td>3338</td>
<td>390</td>
<td>116</td>
<td>20</td>
</tr>
<tr>
<td>2289</td>
<td>391</td>
<td>117</td>
<td>21</td>
</tr>
</tbody>
</table>
Prototype: Pixel Module with Sensor Hit Map (Sr90)
Prototype: Five chips (FPIX1) with dummy sensor

- LVDS drivers
- Connectors to DAQ
- Flex circuit
- Wire bonds
- Readout IC
Prototype: Five readout chips with dummy sensor [e^-]

<table>
<thead>
<tr>
<th>$V_{Th}[V]$</th>
<th>μ_{Th}</th>
<th>σ_{Th}</th>
<th>μ_N</th>
<th>σ_N</th>
<th>μ_{Th}</th>
<th>σ_{Th}</th>
<th>μ_N</th>
<th>σ_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.95</td>
<td>11110</td>
<td>375</td>
<td>92</td>
<td>12</td>
<td>8843</td>
<td>335</td>
<td>88</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10327</td>
<td>345</td>
<td>94</td>
<td>13</td>
<td>7800</td>
<td>300</td>
<td>88</td>
<td>8</td>
</tr>
<tr>
<td>2.05</td>
<td>9170</td>
<td>345</td>
<td>90</td>
<td>16</td>
<td>6790</td>
<td>316</td>
<td>87</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>8196</td>
<td>371</td>
<td>96</td>
<td>15</td>
<td>5715</td>
<td>330</td>
<td>96</td>
<td>10</td>
</tr>
<tr>
<td>2.15</td>
<td>7225</td>
<td>367</td>
<td>91</td>
<td>16</td>
<td>4683</td>
<td>329</td>
<td>95</td>
<td>10</td>
</tr>
</tbody>
</table>
Prototype: PCI Based Test Stand

- FPGA controlling all functions
- PCI interface
- 4MB of RAM
- Daughter card interface (IEEE1386)
- JTAG
- USB
- RS232

Pixel Module
Conclusions

- Only one rad-hard component necessary (FPIX itself) – digitizes, serializes, each output drives 140 Mbps over 10m.
- Pixel control/readout system using copper cables.
- Configurable readout bandwidth to optimize data path width.
- Readout efficiency adequate for BTeV trigger system for track reconstruction.
- Prototype
 a) No significant increase in noise and threshold dispersion when compared with previous single chip prototypes
 b) No crosstalk problems between the digital and analog sections of the readout chip and flex circuit.
- Readout design offers 2 Tbps bandwidth for BTeV pixel detector.