Electroweak Measurements at NuTeV: A Departure from Prediction

Mike Shaevitz
Fermilab and Columbia University
for the NuTeV Collaboration

WIN2002 Conference
Christchurch, New Zealand
January, 2002

- Introduction to Electroweak Measurements
- NuTeV Experiment and Technique
- Experimental and Theoretical Simulation
- Data Sample and Checks
- Electroweak Fits
- Interpretations and Summary

Electroweak Theory

• Standard Model

SU(2) ⊗ U(1) gauge theory unifying weak/EM
⇒ weak Neutral Current interaction

Measured physical parameters related to mixing parameter for the couplings, \(g' = g \tan \theta_W \)

\[
e = g \sin \theta_W, \quad G_F = \frac{g^2 \sqrt{2}}{8M_W^2}, \quad \frac{M_W}{M_Z} = \cos \theta_W
\]

<table>
<thead>
<tr>
<th>Z Couplings</th>
<th>(g_L)</th>
<th>(g_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_e, \nu_\mu, \nu_\tau)</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>(e, \mu, \tau)</td>
<td>(-1/2 + \sin^2 \theta_W)</td>
<td>(\sin^2 \theta_W)</td>
</tr>
<tr>
<td>(u, c, t)</td>
<td>(1/2 - 2/3 \sin^2 \theta_W)</td>
<td>(-2/3 \sin^2 \theta_W)</td>
</tr>
<tr>
<td>(d, s, b)</td>
<td>(-1/2 + 1/3 \sin^2 \theta_W)</td>
<td>(1/3 \sin^2 \theta_W)</td>
</tr>
</tbody>
</table>

• Neutrinos are special in SM

Only have left-handed weak interactions
⇒ \(W^\pm \) and Z boson exchange

Charged-Current Neutral-Current
History of EW Measurements

• Discovery of the Weak Neutral Current
 Summer 1973 (Gargamelle, CERN)
 SM predicted: $\nu_\mu N \rightarrow \nu_\mu X$

• First Generation EW Experiments
 Experiments in the late 1970’s
 Precision at the 10% level
 Tested basic structure of SM \(\Rightarrow M_W, M_Z \)

• Second Generation EW Experiments
 Experiments in the late 1980’s
 Discovery of W, Z boson in 1982-83
 Precision at the 1-5% level
 Radiative corrections become important
 First limits on the \(M_{\text{top}} \)

• Third Generations Experiments
 Precision below 1% level
 Test consistency of SM
 Search for new physics and
 Constrain \(M_{\text{Higgs}} \)
 \(\Rightarrow \) Predict light Higgs boson
 (and possibly SUSY)
Current Era of Precision EW Measurements

• Precision parameters define the SM:
 \[\alpha_{EM}^{-1} = 137.03599959(40) \quad \text{45ppb (200ppm@M_Z)} \]
 \[G_\mu = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2} \quad \text{10ppm} \]
 \[M_Z = 91.1871(21) \quad \text{23ppm} \]

• Comparisons test the SM and probe for new physics
 LEP/SLD
 CDF/D0
 νN, APV

 \[Z^0 \quad (M_Z, \Gamma_Z, \text{asymmetries}) \]
 \[W^\pm \quad (M_W, \Gamma_W) \]

• Radiative corrections are large and sensitive to \(m_{\text{top}} \) and \(m_{\text{Higgs}} \)

\[M_{\text{Higgs}} \text{ constrained in SM to be less than 196 GeV at 95\%CL} \]
Are There Cracks?

• All data suggest a light Higgs except A_{FB}^b

• Global fit has large χ^2
 $\chi^2=23/15$ (9%)
 A_{FB}^b is off about 3σ

• Γ_{inv} also off by $\sim 2\sigma$

$N_v = 2.9841 \pm 0.0083$

Higgs Mass Constraint

Leptons Quarks

Preliminary

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Pull</th>
<th>O_{max}^0</th>
<th>χ^2_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta m_{fb}^b(m_{Z})$</td>
<td>0.02761 ± 0.00036</td>
<td>-0.35</td>
<td></td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>α_{em} [nb]</td>
<td>41.540 ± 0.037</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>R_b</td>
<td>20.767 ± 0.025</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>A_{FB}^{b}</td>
<td>0.1714 ± 0.00085</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>A_{FB}^{c}</td>
<td>0.21646 ± 0.00065</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>R_{inv}</td>
<td>0.1718 ± 0.0031</td>
<td>-1.12</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}^{l\nu}$</td>
<td>0.0990 ± 0.0017</td>
<td>-2.90</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}^{e\nu}$</td>
<td>0.6685 ± 0.0034</td>
<td>-1.71</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}^{l\ell}$</td>
<td>0.670 ± 0.026</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}^{l\nu}$</td>
<td>0.1513 ± 0.0021</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>$\sin^2\theta_{wb}(Q_{inv})$</td>
<td>0.2234 ± 0.0012</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>m_{W}^{lep} [GeV]</td>
<td>80.450 ± 0.039</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>$m_{W}^{Q_{inv}}$ [GeV]</td>
<td>80.454 ± 0.060</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>$\sin^2\theta_{wb}(Q_{inv})$</td>
<td>0.2255 ± 0.0021</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>$Q_{inv}(C_s)$</td>
<td>72.50 ± 0.70</td>
<td>0.56</td>
<td></td>
</tr>
</tbody>
</table>
NuTeV Adds Another Arena

- **Precision** comparable to collider measurements of M_W

- Sensitive to different new physics
 - Different radiative corrections

- Measurement **off the Z pole**
 - Exchange is not guaranteed to be a Z

- Measures **neutrino neutral current coupling**
 - LEP 1 invisible line width is only other precise measure

- Sensitive to **light quark (u,d) couplings**
 - Overlap with APV, Tevatron Z production

- Tests universality of EW theory over large range of momentum scales
For an isoscalar target composed of u,d quarks:

- $\text{NC/CC ratio easiest to measure experimentally but ...}$
 - Need to correct for non-isoscalar target, radiative corrections, heavy quark effects, higher twists
 - Many SF dependencies and systematic uncertainties cancel
 - Major theoretical uncertainty $m_c \Rightarrow$ Suppress CC wrt NC

Llewellyn Smith Relation:

$$R^{v(\bar{v})} = \frac{\sigma^{v(\bar{v})}_{NC}}{\sigma^{v(\bar{v})}_{CC}} = \rho^2 \left(\frac{1}{2} - \sin^2 \theta_W + \frac{5}{9} \sin^4 \theta_W \left(1 + \frac{\sigma^{v(\bar{v})}_{CC}}{\sigma^{v(\bar{v})}_{CC}} \right) \right)$$
Charm Mass Effects

• CC is suppressed due to final state c-quark
 ⇒ Need to know s-quark sea and m_c
 Modeled with leading-order slow-rescaling

\[
x = \frac{Q^2}{2M_N} \quad \Rightarrow \quad \xi = \frac{Q^2 + m_c^2}{2M_N}
\]

Measured by NuTeV/CCFR using dimuon events
($\nu N \rightarrow \mu cX \rightarrow \mu\mu X$) (M. Goncharov et al., Phys. Rev. D64: 112006, 2001 and A.O. Bazarko et al., Z. Phys. C65: 189-198, 1995)
Before NuTEV

• νN experiments had hit a brick wall in precision
 ⇒ Due to systematic uncertainties (i.e. m_c)

$$\sin^2 \theta_{W}^{on-shell} = 1 - \frac{M_W^2}{M_Z^2} = 0.2277 \pm 0.0036$$

⇒ $M_W = 80.14 \pm 0.19$ GeV

(All experiments corrected to NuTeV/CCFR m_c
and to large $M_{top} > M_W$)
NuTeV’s Technique

Cross section differences remove sea quark contributions
⇒ Reduce uncertainties from charm production and sea

\[
R^- = \frac{\sigma_{NC}^\nu - \sigma_{NC}^{\bar{\nu}}}{\sigma_{CC}^\nu - \sigma_{CC}^{\bar{\nu}}} = \rho^2 \left(\frac{1}{2} + \sin^2 \theta_W \right) = \frac{R^\nu - rR^{\bar{\nu}}}{1 - r}
\]

\[
\begin{align*}
\sigma(\nu_\mu d_{\text{sea}}) - \sigma(\bar{\nu}_\mu \bar{d}_{\text{sea}}) &= 0 \quad \Rightarrow \text{Only } d_{\text{valence}} \text{ contribute} \\
\sigma(\nu_\mu \bar{u}_{\text{sea}}) - \sigma(\bar{\nu}_\mu u_{\text{sea}}) &= 0 \quad \Rightarrow \text{Only } u_{\text{valence}} \text{ contribute} \\
\sigma(\nu_\mu s_{\text{sea}}) - \sigma(\bar{\nu}_\mu \bar{s}_{\text{sea}}) &= 0 \quad \Rightarrow \text{No strange – sea contribution} \\
\end{align*}
\]

\(\text{Paschos - Wolfenstein Relation}\)

\(R^-\) manifestly insensitive to sea quarks

– Charm and strange sea error negligible
– Charm production small since only enters from \(d_V\) quarks only which is Cabbibo suppressed and at high-\(x\)

Note: NuTeV measures \(R^\nu\) and \(R^{\bar{\nu}}\) which, when used simultaneously, is equivalent to \(R^-\).

• \(R^-\) requires separate \(\nu\) and \(\bar{\nu}\) beams
⇒ NuTeV SSQT (Sign-selected Quad Train)
- Beam is almost pure ν or $\bar{\nu}$
 ($\bar{\nu}$ in ν mode 3×10^{-4}, ν in $\bar{\nu}$ mode 4×10^{-3})

- Beam only has $\sim 1.6\%$ electron neutrinos
 \Rightarrow Important background for isolating true NC event
NuTeV Lab E Neutrino Detector

168 Fe plates (3m x 3m x 5.1 cm)
84 liquid scintillation counters

- Trigger the detector
- Measure:
 - Visible energy
 - ν interaction point
 - Event length

42 drift chambers
- Localize transverse vertex

Toroid Spectrometer
- Measures μ momentum/charge
- $P_T = 2.4$ GeV
 for $\delta P/P \approx 10\%$

Continuous Test Beam
- simultaneous with ν runs
 - Hadron, muon, electron beams
 - Map toroid and calorimeter response

690 ton ν-target
Picture from 1998 - Detector is now dismantled
NuTeV Collaboration

G. P. Zeller5, T. Adams4, A. Alton4,
S. Avvakumov8, L. de Barbaro5, P. de Barbaro8,
R. H. Bernstein3, A. Bodek8, T. Bolton4,
J. Brau6, D. Buchholz5, H. Budd8, L. Bugel3,
J. Conrad2, R. B. Drucker6, B. T. Fleming2,
R. Frey6, J.A. Formaggio2, J. Goldman4,
M. Goncharov4, D. A. Harris8, R. A. Johnson1,
J. H. Kim2, S. Koutsoliotas2, M. J. Lamm3,
W. Marsh3, D. Mason6, J. McDonald7,
K. S. McFarland8,3, C. McNulty2, D. Naples7,
P. Nienaber3, A. Romosan2, W. K. Sakamoto8,
H. Schellman5, M. H. Shaevitz2,
P. Spentzouris2, E. G. Stern2, N. Suwonjandee1,
M. Tzanov7, M. Vakili1, A. Vaitaitis2,
U. K. Yang8, J. Yu3, and E. D. Zimmerman2

Cincinnati1, Columbia2, Fermilab3, Kansas State4,
Northwestern5, Oregon6, Pittsburgh7, Rochester8
(Co-spokepersons: B.Bernstein, M.Shaevitz)
Neutral Current / Charged Current Event Separation

- Separate NC and CC events statistically based on the “event length” defined in terms of # counters traversed

\[R_{\text{exp}} = \frac{\text{SHORT events}}{\text{LONG events}} = \frac{L \leq L_{\text{cut}}}{L > L_{\text{cut}}} = \frac{\text{NC Candidates}}{\text{CC Candidates}} \]

(measure this ratio in both ν and $\bar{\nu}$ modes)
NuTeV Data Sample

- Events selections:
 - Require Hadronic Energy, $E_{\text{Had}} > 20 \text{ GeV}$
 - Require Event Vertex with fiducial volume

- Data with these cuts:
 - 1.62 million ν events
 - 351 thousand $\overline{\nu}$ events

![Diagram of event selection process with fiducial region, target, calorimeter, and toroid spectrometer.]
Determine \(R_{\text{exp}} \): The Short to Long Ratio:

Use \(E_{\text{had}} \) dependent \(L_{\text{cut}} \) to minimize short CC correction

<table>
<thead>
<tr>
<th></th>
<th>Short (NC) Events</th>
<th>Long (CC) Events</th>
<th>(R_{\text{exp}} = \text{Short/Long})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrino</td>
<td>457K</td>
<td>1167K</td>
<td>0.3916 ± 0.0007</td>
</tr>
<tr>
<td>Antineutrino</td>
<td>101K</td>
<td>250K</td>
<td>0.4050 ± 0.0016</td>
</tr>
</tbody>
</table>
From R_{exp} to R^ν

Need detailed Monte Carlo to relate R_{exp} to R^ν and $\sin^2\theta_W$

- **Cross Section Model**
 - LO pdfs (CCFR)
 - Radiative corrections
 - Isoscalar corrections
 - Heavy quark corrections
 - R_{Long}
 - Higher twist corrections

- **Detector Response**
 - CC ↔ NC cross-talk
 - Beam contamination
 - Muon simulation
 - Calibrations
 - Event vertex effects

- **Neutrino Flux**
 - ν_μ and ν_e flux

Analysis goal is use data directly to set and check the Monte Carlo simulation
Background Corrections

- Short ν_μ CC's (20% ν, 10% ν)
 muon exits, range out at high y

- Short ν_e CC's (5%)
 $\nu_e N \rightarrow e X$

- Cosmic Rays (0.9%/4.7%)

- Long ν_μ NC's (0.7%)
 punch-through effects
Key Elements of Monte Carlo

- Parton Distribution Model
 Needed to correct for details of the PDF model
 Needed to model cross over from short ν_μ CC events
- Neutrino fluxes
 $\nu_\mu, \nu_e, \bar{\nu}_\mu, \bar{\nu}_e$ in the two running modes
 Electron neutrino CC events always look short
- Shower Length Modeling
 Needed to correct for short events that look long
- Detector response vs energy, position, and time
 Test beam running throughout experiment crucial

Top Five Largest Corrections

<table>
<thead>
<tr>
<th>Source</th>
<th>δR^v_{exp}</th>
<th>$\delta R^{\bar{v}}_{\text{exp}}$</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short CC Background</td>
<td>-0.068</td>
<td>-0.026</td>
<td>Check medium length events</td>
</tr>
<tr>
<td>Electron Neutrinos</td>
<td>-0.021</td>
<td>-0.024</td>
<td>Direct check from data</td>
</tr>
<tr>
<td>EM Radiative Correction</td>
<td>+0.0074</td>
<td>+0.0109</td>
<td>Well understood</td>
</tr>
<tr>
<td>Heavy m_c</td>
<td>-0.0052</td>
<td>-0.0117</td>
<td>R$^-$ technique</td>
</tr>
<tr>
<td>Cosmic-ray Background</td>
<td>-0.0036</td>
<td>-0.019</td>
<td>Direct from data</td>
</tr>
<tr>
<td>Compare to statistical error</td>
<td>± 0.0013</td>
<td>± 0.0027</td>
<td></td>
</tr>
</tbody>
</table>
NC and CC quark model for $\nu / \bar{\nu}$ cross-sections needs:

$$q(x, Q^2) \text{ and } \bar{q}(x, Q^2)$$

- PDFs extracted from CCFR data exploiting symmetries:
 Isospin symmetry: $u^p = d^n$, $d^p = u^n$, and strange = anti-strange
- Data-driven: uncertainties come from measurements

• LO quark-parton model tuned to agree with data:
 – Heavy quark production suppression and strange sea (CCFR/NuTeV $\nu N \rightarrow \mu^+ \mu^- X$ data)
 – R_L, F_2 higher twist (from fits to SLAC, BCDMS)
 – d/u constraints from NMC, NUSEA(E866) data
 – Charm sea from EMC F_2^{cc}

This “tuning” of model is crucial for the analysis
NuTeV Neutrino Flux

• Use beam Monte Carlo simulation tuned to match the observed ν_μ spectrum

 Tuning needed to correct for uncertainties in SSQT alignment and particle production at primary target

Data vs Monte Carlo E_ν Spectrum

Simulation is very good but needs small tweaks at the $\sim 0.3 - 3\%$ level for E_π, E_K, K/π
Charged-Current Control Sample

- **Medium** length events (L>30 cntrs) check modeling and simulation of **Short** charged-currents sample

 Similar kinematics and hadronic energy distribution

![Graphs showing data and MC comparison](image)

- Good agreement between data and MC for the medium length events.
Approximately 5% of short events are ν_e CC events

Main ν_e source is K^\pm decay (93% / 70%)

Others include $K_{L,S}$ (4%/18%) reduced by SSQT and Charm (2%/9%)

Main uncertainty is K^{\pm}_{e3} branching ratio (known to 1.4%) !!

• But also have direct ν_e measurement techniques.
Direct Measurements of ν_e Flux

1. ν_μ^{CC} (wrong-sign) events in antineutrino running constrain charm and K_L production

2. Shower shape analysis can statistically pick out ν events ($80 < E_\nu < 180$ GeV)

3. ν_e from very short events ($E_\nu > 180$ GeV)

 Precise measurement of ν_e in tail region of flux

 Observe \sim35% more $\bar{\nu}_e$ than predicted above 180 GeV, and a smaller excess in ν beam

 Conclude that we should require $E_{\text{had}} < 180$ GeV

\[N_{\text{meas}} / N_{\text{MC}} : 1.05 \pm 0.03 (\nu_e) \]
\[1.01 \pm 0.04 (\bar{\nu}_e) \]

NuTeV preliminary result did not have this cut
\[\Rightarrow \text{shifts } \sin^2\theta_W \]
\[\text{by } +0.002 \]
R_{\text{exp}} Stability Tests vs. Experimental Parameters

- Verify systematic uncertainties with data to Monte Carlo comparisons a function of exp. variables.
- Longitudinal Vertex: checks detector uniformity

![Graphs showing R_{\text{exp}} vs. Experimental Parameters](image)

Note: Shift from zero is because NuTeV result differs from Standard Model
Stability Tests (cont’d)

- R_{exp} vs. length cut: Check NC ↔ CC separation syst. “16,17,18” L_{cut} is default: tighten ↔ loosen selection

Yellow band is stat error

- R_{exp} vs. radial bin: Check corrections for ν_e and short CC which change with radius.
Distributions vs. E_{had}

Short Events (NC Cand.) vs E_{had}

Long Events (CC Cand.) vs E_{had}
Stability Test: R_{exp} vs E_{Had}

- Short/Long Ratio vs E_{Had} checks stability of final measurement over full kinematic region
 Checks almost everything: backgrounds, flux, detector modeling, cross section model,
Fit for $\sin^2 \theta_W$

$$R^v(\bar{\nu}) = \frac{\sigma^v_{NC}}{\sigma^v_{CC}} = \rho_0^2 \left(\frac{1}{2} - \sin^2 \theta_W + \frac{5}{9} \sin^4 \theta_W \left(1 + \frac{\sigma^v_{CC}}{\sigma^v_{CC}} \right) \right)$$

$$\frac{dR^v_{\text{exp}}}{d \sin^2 \theta_W} \quad \text{large}$$

$$R^v_{\text{exp}} \rightarrow \sin^2 \theta_W$$

$$\frac{dR^{\bar{\nu}}_{\text{exp}}}{d \sin^2 \theta_W} \quad \text{small}$$

$$R^{\bar{\nu}}_{\text{exp}} \rightarrow \text{systematics (i.e. } m_c \text{)}$$

Simultaneous fit of R^v_{exp} and $R^{\bar{\nu}}_{\text{exp}}$ to two parameters:

$\sin^2 \theta_W$ and m_c

Also input $m_c = 1.38 \pm 0.14$ from ν dimuon measurements

This fit is equivalent to using R^- in reducing systematic uncertainty

Result:

$$\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm 0.0013(\text{stat.}) \pm 0.0009(\text{syst.})$$

$$m_c = 1.32 \pm 0.09(\text{stat.}) \pm 0.06(\text{syst.})$$

Can also do a two parameter fit to ρ and $\sin^2 \theta_W$:

$$\sin^2 \theta_W^{(on-shell)} = 0.2265 \pm 0.0031$$

$$\rho_0 = 0.9983 \pm 0.0040 \quad (\text{Correlation Coef.} = 0.85)$$
Uncertainties in Measurement

- $\sin^2 \theta_W$ error statistically dominated $\Rightarrow R^-$ technique
- R^ν uncertainty dominated by theory model

<table>
<thead>
<tr>
<th>SOURCE OF UNCERTAINTY</th>
<th>$\delta \sin^2 \theta_W$</th>
<th>$\delta R^\nu_{\text{exp}}$</th>
<th>$\delta R^{\bar{\nu}}_{\text{exp}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Statistics</td>
<td>0.00135</td>
<td>0.00069</td>
<td>0.00159</td>
</tr>
<tr>
<td>Monte Carlo Statistics</td>
<td>0.00010</td>
<td>0.00006</td>
<td>0.00010</td>
</tr>
<tr>
<td>TOTAL STATISTICS</td>
<td>0.00135</td>
<td>0.00069</td>
<td>0.00159</td>
</tr>
<tr>
<td>$\nu_e, \bar{\nu}_e$ Flux</td>
<td>0.00039</td>
<td>0.00025</td>
<td>0.00044</td>
</tr>
<tr>
<td>Interaction Vertex</td>
<td>0.00030</td>
<td>0.00022</td>
<td>0.00017</td>
</tr>
<tr>
<td>Shower Length Model</td>
<td>0.00027</td>
<td>0.00021</td>
<td>0.00020</td>
</tr>
<tr>
<td>Counter Efficiency, Noise, Size</td>
<td>0.00023</td>
<td>0.00014</td>
<td>0.00006</td>
</tr>
<tr>
<td>Energy Measurement</td>
<td>0.00018</td>
<td>0.00015</td>
<td>0.00024</td>
</tr>
<tr>
<td>TOTAL EXPERIMENTAL</td>
<td>0.00063</td>
<td>0.00044</td>
<td>0.00057</td>
</tr>
<tr>
<td>Charm Production, $s(x)$</td>
<td>0.00047</td>
<td>0.00089</td>
<td>0.00184</td>
</tr>
<tr>
<td>R_L</td>
<td>0.00032</td>
<td>0.00045</td>
<td>0.00101</td>
</tr>
<tr>
<td>$\sigma^{\bar{\nu}} / \sigma^{\nu}$</td>
<td>0.00022</td>
<td>0.00007</td>
<td>0.00026</td>
</tr>
<tr>
<td>Higher Twist</td>
<td>0.00014</td>
<td>0.00012</td>
<td>0.00013</td>
</tr>
<tr>
<td>Radiative Corrections</td>
<td>0.00011</td>
<td>0.00005</td>
<td>0.00006</td>
</tr>
<tr>
<td>Charm Sea</td>
<td>0.00010</td>
<td>0.00005</td>
<td>0.00004</td>
</tr>
<tr>
<td>Non-Isoscalar Target</td>
<td>0.00005</td>
<td>0.00004</td>
<td>0.00004</td>
</tr>
<tr>
<td>TOTAL MODEL</td>
<td>0.00064</td>
<td>0.00101</td>
<td>0.00212</td>
</tr>
<tr>
<td>TOTAL UNCERTAINTY</td>
<td>0.00162</td>
<td>0.00130</td>
<td>0.00272</td>
</tr>
</tbody>
</table>
NuTeV Technique Gives Reduced Uncertainties

Comparison to CCFR:

NuTeV/CCFR Error Comparison

- Data Statistics
- MC Statistics
- ν_e Flux
- Calibrations
- μ Energy Deposition
- Energy Resolution
- Hadron Shower
- Vertex Determination
- Counter Edge
- Counter Efficiency/noise
- Charm Prod/Strange Sea
- Charm Sea
- Cross Section Diff
- Non–isoscalar Target
- Higher Twist
- R_{long}
- Radiative Corrections

Error on $\sin^2 \Theta_W (x10^{-4})$
\[\sin^2 \theta_W^{(\text{on-shell})} = 0.2277 \pm 0.0013 (\text{stat.}) \pm 0.0009 (\text{syst.}) = 0.2277 \pm 0.0016 \]

- **NuTeV result:**
 - Error is statistics dominated
 - Is \(\times 2.3 \) more precise than previous \(\nu N \) experiments where \(\sin^2 \theta_W = 0.2277 \pm 0.0036 \) and syst. dominated

- **Standard model fit (LEPEWWG):** 0.2227 \(\pm 0.00037 \)
 A 3\(\sigma \) discrepancy

\[
\begin{align*}
R_{\text{exp}}^\nu &= 0.3916 \pm 0.0013 \quad (SM : 0.3950) \quad \Leftarrow 3\sigma \text{ difference} \\
R_{\text{exp}}^\bar{\nu} &= 0.4050 \pm 0.0027 \quad (SM : 0.4066) \quad \Leftarrow \text{Good agreement}
\end{align*}
\]
Comparison to M_W Measurements

\[
\sin^2 \theta_W^{(on-shell)} \equiv 1 - \frac{M_W^2}{M_Z^2}
\]

- Extract M_W from NuTeV $\sin^2 \theta_W$ value

\[M_W = 80.136 \pm 0.084 \text{ GeV}\]

QCD and electroweak radiative corrections are small

Precision comparable to collider measurements but value is smaller

- 80.433 ± 0.079 \hspace{1cm} CDF
- 80.483 ± 0.084 \hspace{1cm} D0
- 80.471 ± 0.049 \hspace{1cm} ALEPH*
- 80.401 ± 0.066 \hspace{1cm} DELPHI*
- 80.398 ± 0.069 \hspace{1cm} L3*
- 80.490 ± 0.065 \hspace{1cm} OPAL*
- 80.451 ± 0.033 \hspace{1cm} Direct World Average
- 80.376 ± 0.023 \hspace{1cm} Indirect World Average (LEP1/SLD/APV/m$_{\mu}$) (LEPEWWG)
- 80.136 ± 0.084 \hspace{1cm} NuTeV

* : Preliminary
SM Global Fit with NuTeV $\sin^2\theta_W$

Fall 2001

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Pull $(O_{\text{meas}} - O_{\text{fit}})/\sigma_{\text{meas}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta\alpha_{\text{had}}^{(B)}(m_Z)$</td>
<td>0.02761 ± 0.00036, -.30</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021, .01</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023, -.41</td>
</tr>
<tr>
<td>σ_{had}^{0} [nb]</td>
<td>41.540 ± 0.037, 1.63</td>
</tr>
<tr>
<td>R_t</td>
<td>20.767 ± 0.025, 1.06</td>
</tr>
<tr>
<td>$A_{t/b}$</td>
<td>0.01714 ± 0.00095, .76</td>
</tr>
<tr>
<td>$A_{f}(P_f)$</td>
<td>0.1465 ± 0.0033, -.45</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21646 ± 0.00065, 1.08</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1719 ± 0.0031, -.12</td>
</tr>
<tr>
<td>$A_{t/b}^{0,b}$</td>
<td>0.0990 ± 0.0017, -2.78</td>
</tr>
<tr>
<td>$A_{t/b}^{0,c}$</td>
<td>0.0685 ± 0.0034, -1.67</td>
</tr>
<tr>
<td>A_b</td>
<td>0.922 ± 0.020, -.64</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.026, .07</td>
</tr>
<tr>
<td>A_f (SLD)</td>
<td>0.1513 ± 0.0021, 1.61</td>
</tr>
<tr>
<td>$\sin^2\theta_{\text{eff}}^{L_{\text{lep}}}(Q_{ic})$</td>
<td>0.2324 ± 0.0012, .83</td>
</tr>
<tr>
<td>$m_W^{(\text{LEP})}$ [GeV]</td>
<td>80.450 ± 0.039, 1.50</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>174.3 ± 5.1, -.14</td>
</tr>
<tr>
<td>$m_W^{(\text{TEV})}$ [GeV]</td>
<td>80.454 ± 0.060, 1.04</td>
</tr>
<tr>
<td>$\sin^2\theta_W$ (NuTeV)</td>
<td>0.2277 ± 0.0016, 2.98</td>
</tr>
<tr>
<td>Q_W (Cs)</td>
<td>-72.50 ± 0.70, .56</td>
</tr>
</tbody>
</table>

(Courtesy M. Grunewald, LEPEWWG)

- Without NuTeV: χ^2/dof = 21.5/14, probability of 9.0%
- With NuTeV: χ^2/dof = 30.5/15, probability of 1.0%

 Upper m_{Higgs} limit weakens slightly 87 \rightarrow 91 GeV
Possible Interpretations

• Changes in Standard Model Fits
 Change PDF sets
 Change M_{Higgs}

• “Old Physics” Interpretations: QCD
 Violations of “isospin” symmetry
 Strange vs anti-strange quark asymmetry

• Are ν’s Different?
 Special couplings to new particles
 Majorana neutrino effects

• “New Physics” Interpretations
 New $Z’$ or lepto-quark exchanges
 New particle loop corrections
Standard Model Fits to Quark Couplings

For an isoscalar target, the νN couplings are:

\[
\begin{align*}
g_L^2 &= u_L^2 + d_L^2 = \rho^2 \left(\frac{1}{2} - \sin^2 \theta_W + \frac{5}{9} \sin^4 \theta_W \right) \\
g_R^2 &= u_R^2 + d_R^2 = \rho^2 \left(\frac{5}{9} \sin^4 \theta_W \right)
\end{align*}
\]

Two parameter fit to R_{exp}^ν and $R_{\text{exp}}^\bar{\nu}$:

\[
\begin{align*}
g_L^2 &= 0.3005 \pm 0.0014 \quad (SM : 0.3042) \iff 2.6\sigma \text{ difference} \\
g_R^2 &= 0.0310 \pm 0.0011 \quad (SM : 0.0301) \iff \text{agreement}
\end{align*}
\]

Example variations with LO/NLO PDF Sets (no NLO m_c effects)

(S.Davidson et al. hep-ph/0112302)

- Difficult to explain discrepancy with SM using:
 - Parton distributions or LO vs NLO
 - Electroweak radiative corrections: heavy $m_{ \text{Higgs}}$
“Old Physics” Interpretations: QCD

R^- technique could be sensitive to q/\bar{q} differences:

$$R^- = g_L^2 - g_R^2 + \frac{\int xdx \left\{ (u_{val}^p - d_{val}^n) - (d_{val}^p - u_{val}^n) + (c - \bar{c}) - (s - \bar{s}) \right\}}{\int xdx \left(u_{val}^p + d_{val}^p \right)} \times \left\{ 3(g_{Lu}^2 - g_{Ru}^2) + (g_{Ld}^2 - g_{Rd}^2) \right\} + \ldots$$

- Valence quark momentum fraction $\int xdx \left(u_{val}^p + d_{val}^p \right) \approx 0.18$
 $\Rightarrow \int xdx \left\{ (u_{val}^p - d_{val}^n) - (d_{val}^p - u_{val}^n) + (c - \bar{c}) - (s - \bar{s}) \right\} \approx -0.038$
 could explain the NuTeV vs SM difference

- Isospin symmetry assumption: $u^p = d^n$ and $d^p = u^n$

 Expect violations around $(m_u - m_d)/\Lambda_{QCD} \approx 1\% \Rightarrow \delta \sin^2 \theta_W = 0.0004$

 Model dependent: Bag Models, Meson Cloud Models, ...

 give small $\delta \sin^2 \theta_W$ of this order.

 (Thomas et al., PL A9 1799, Cao et al., PhysRev C62 015203)

- Strange vs anti-strange quark asymmetry $\Delta s = \int xdx \left(s - \bar{s} \right)$

 The number of strange vs anti-strange needs to be the same but the momentum distributions could differ.

 - An asymmetry of $\Delta s = 0.002$ gives $\delta \sin^2 \theta_W = 0.0026$
 - CCFR/NuTeV ν-dimuons limit the size of $\Delta s \ll 0.002$

Are ν’s Different?

- NuTeV result fits as a change in the $\nu / \bar{\nu}$ coupling
 \[\rho_0^2 = 0.9884 \pm 0.0026(\text{stat.}) \pm 0.0032(\text{syst.}) \]

- LEP 1 measures Z lineshape and partial decay widths to infer the “number of neutrinos”
 \[N_\nu = 3 \frac{\Gamma_{\exp}(Z \to \nu\bar{\nu})}{\Gamma_{SM}(Z \to \nu\bar{\nu})} = 3 \times (0.9947 \pm 0.0028) \leq 1.9\sigma \text{ low} \]

- If neutrinos are Majorana, they may have different fundamental couplings from other particles to an extra U(1) type Z'
 - Majorana neutrinos could have zero charge wrt to extra U(1)
 - Can this explain why charged leptons are different from ν’s?
“New Physics” Interpretations

- Z’, LQ, ... exchange
- NuTeV needs LL enhanced relative to LR coupling

- Oblique (propagator) corrections
 Constrained by SM fits

- Gauge boson interactions
 Allow generic couplings
 Example: Extra Z’ boson
 - Mixing with E(6) Z’
 - Z’=$Z_x\cos\beta + Z_y\cos\beta$
 - LEP/SLC mix<10^{-3}

- Hard to accommodate entire NuTeV discrepancy.
 Global fits somewhat better with E(6) Z’ included
 Example: Erler and Langacker: SM $\Delta \chi^2 \approx 7.5$
 $m_{Z'}=600 \text{ GeV}$, mixing $\sim 10^{-3}$, $\beta \approx 1.2$
 “Almost sequential” Z’ with opposite coupling
 - NuTeV would want $m_{Z'} \sim 1.2 \text{ TeV}$
 - CDF/D0 Limits: $m_{Z'} > 700 \text{ GeV}$

Langacker et al., Rev.Mod.Phys.64,87; Davidson et al., hep-ph/0112302.)
Recent Summary of Possible Interpretations

S.Davidson, S.Forte, P.Gambino, N.Rius, A.Strumia (hep-ph/0112302)

• **QCD effects:**
 – Small asymmetry in momentum carried by strange vs antistrange quarks \(\Rightarrow\) CCFR/NuTeV \(\nu\) dimuons limits
 – Small isospin violation in PDFs \(\Rightarrow\) expected to be small

• **Propagator and coupling corrections to SM gauge bosons:**
 – Small compared to effect
 – Hard to change only \(\nu Z\nu\)

• **MSSM:**
 – Loop corrections wrong sign and small compared to NuTeV

• **Contact Interactions:**
 – Left-handed quark-quark-lepton-lepton vertices, \(\epsilon_{\text{LL}}^{\nu\nuqq}\), with strength \(\sim 0.01\) of the weak interaction \(\Rightarrow\) Look Tevatron Run II

• **Leptoquarks:**
 – SU(2)\(_L\) triplet with non-degenerate masses can fit NuTeV and evade \(\pi\)–decay constraints

• **Extra U(1) vector bosons:**
 – An unmixed \(Z'\) with B-3L\(_\mu\) symmetry can explain NuTeV
 – Mass: \(600 < M_{Z'} < 5000\) GeV or \(1 < M_{Z'} < 10\) GeV
 – Light \(Z'\) may relate to:
 • GZK cutoff UHE cosmic-rays (\(\nu\nu\rightarrow qq\))
 • Source of heavy neutral leptons: NuTeV anomalous dimuon signal.
Summary

• NuTeV measurement has the precision to be important for SM electroweak test

• For NuTeV the SM predicts 0.2227 ± 0.0003 but we measure

 \[\sin^2\theta_W^{(on-shell)} = 0.2277 \pm 0.0013\,(stat.) \pm 0.0009\,(syst.) \]

 (Previous neutrino measurements gave 0.2277 ± 0.0036)

• In comparison to the Standard Model

 The NuTeV data prefers a lower effective left-handed quark coupling

• The discrepancy with the Standard Model could be related to:

 Quark model uncertainties but looks like only partially and / or

 Possibly new physics that is associated with neutrinos and interactions with left-handed quarks