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Abstract

By means of linear optics, an arbitrary uncoupled beam
can be locally transformed into a round (rotation-invariant)
state and then back. Thisprovidesan efficient way to round
beams in the interaction region of circular colliders.

1 ROUND BEAMSAND
ROTATION-INVARIANT MAPS

Round beams in the interaction region of a circular col-
lider are widely believed to be an effective way to increase
the luminosity (see e. g. [1] and the references therein).

Canonica angular momentum (CAM) preservation by
the IP revolution mapping might play a crucia rolein the
luminosity upgrade of circular colliders. The CAM is pre-
served when 2 conditions are satisfied:

e The lattice IP revolution map is CAM-preserving;
e Thebeams areroundinthelR.

General form of the CAM -preserving matriceswas found
by E. Pozdeev and E. Perevedentsev [2]:
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The CAM-preserving group isidentical tothe symplectic
rotation-invariant transformations.

Parameteri zation of the 2 x 2 unimodular matrix T can be

taken in the conventional Courant-Snyder form, interms of
itsinput vy, (31 and output o, o parameters and a phase
advance i1 : (seee. g. [3]):
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wheres = sin u ¢ = cos u, the subscript 1 of the Courant-
Snyder parametersrelatestoaninitial and 2 to afinal states.

2 CIRCULARBASIS

The simplectic basis which form is preserved by the
rotation-invariant transformations:

ViBey VBsy  —VBc.  —/Ps-
—S—oCy CpL—ast s_+ac_ —C_—+as_

v | T T B T
V2 VBsy  —VBey  VBs- =B
CpL—asy sy+acy cC_—as_ s_+ac_

Vi B B b

3

* burov@fnal .gov

T505

where c; = cos¢ysy = sin¢y with arbitrary phases
¢+. Similar, but not exactly same presentation of the circu-
lar modes was used by V. Lebedev and S. Bogacz [4]. A
great feature of this parameterization:

Under the rotation-invariant transformations (1) the circu-
lar set (3) istransformed similar to how thelinear basis does
under the uncoupled mappings:

U=T U, B, ¢4, ¢-) = Ulas, fo, 4 +p—0,6— +p+96) .

(4)

Any phase space vector = can be expanded over thisro-
tating basis:

x=U-a. (5)

a= (\/2Jpsin x4, \/2J4 cos xyt,/2J_sinx_,\/2J_ cos x_)

(6)
Taking the amplitudes from their definition (5), the actions
can be expressed in terms of 2D vectors of the offset and
transverse momentum = (z,y) , o' = (Pz, Py):

Ji =% /4 + afp)2 + Bp%/A+ M/2 ©)

wherey = (1 + o?)/B and M = zp, — yp,, isthe CAM.
Note a similarity of this expression to the corresponding
formulain the uncoupled case.

Preservation of the circular actions J under the invari-
ant mappings means that both their sum and difference are
preserved as well:

Jy —J_ =M = const;
Jy +J_ =~ )2+ i+ 3p?/2 = const.  (8)

Inverse expressions are found as
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wherey = ¢ + x4+ +¢— +x—. When only one of thetwo
circular modes is excited (either J or J_ iszero), then

P =3J,p?=~J, Fp=—-aJ, M==+J. (10)

3 ADAPTERS

Both uncoupled V' and circular U (3) basic sets are sym-
plectic; therefore, they can be mapped on each other. Sym-
plectic transformations
and C=V.U"!

c=U-v! (11)
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map the uncoupled basis V' on the circular basis U, and
back, respectfully. Note that the uncoupled-to-circular
transformation C maps the horizontal and vertical phase
spaces on the modes of opposite helicities. So the cor-
responding uncoupled and circular Courant-Snyder invari-
antsare equal:

Jo=Jp iy =J-. (12)

Adaptive transformations are illustrated schematically
by Fig. 1.

4 |MPLEMENTATION OF ADAPTERS

A particular solutionfor the adaptivetransformation[ Ya.
Derbenev]:
C =R(m/4){M,N)R(—m/4) (13)

where (M, N) standsfor ablock-diagonal 4 x 4 matrix with
M and N asits2 x 2 diagonal blocks:
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The matrices M, N are related as
B (0 -B
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this particular adapter transforms initial uncoupled basis
(subscript 0) into acircular basis at itswaist point (aw = 0).

5 CIRCULAR EIGENMODESFOR A
SOLENOID

Circular eigenmodes of an extended solenoid: CS pa-
rameters remain constant, and only the phases run. The
solenoidal transformation:

T =R(—0,) - (Ts, Ts) (17)
with
_ cos 0 B, sin 0,
Te= ( —fB;sinfy  cosf ) : (18)

Here 6, = eBz/(2poc) = z/(2p) isthe Larmor phase ad-
vance and

Bs = 2¢/(eB) (19)
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can be referred to as the Larmor S-function. The Courant-
Snyder parameters of the circular basis with 5 = g5 and
a = 0 are preserved insidethe solenoid: thefirst pair of the
basisvectorsturnsby an angle A¢, = 0 + 65 = 20, and
the second pair by A¢p_ = —05 + 0, = 0, 1. e. remains
constant.

The canonical variables a associated with these circular
modes describe the kinetic momenta

ky = py +x/Bs ke =pz—y/Bs (20)
and coordinates of the Larmor center
dy =x/2 = Bspy/2 dy=y/2+ Bspz/2;  (21)

namely,
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When the adapter C is matched with an adjacent down-
stream solenoid, i. e o« = 0,8 = S, the horizontal
degree of freedom of the incoming uncoupled beam trans-
formsintothe cyclotron modeinsidethe solenoid, whilethe

vertical one transforms into the drift mode, and the emit-
tances are preserved:

(23)
with the brackets (...) standing for an ensemble averaging.
For a particular case of the round beam inside the solenoid,

‘when (d2) = (d2) = d?, (d.d,) = 0 and similar momen-

tum relations, it yields
e, = BK*/2, e, =2d%/8.

The solenoid with an oppositefield switches mapping: the
horizontal degree of freedom is mapped onto the drift mode
and the vertical planeis mapped onto the cyclotron mode.

Similar relations take place for the reverse, circular-to-
uncoupled transformations C.

(24)

6 LOCAL ROTATION INVARIANCE

When the rotation invariance islocal (continuous):
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Here 5y and v, are therelativisticfactors, pg = mcByvo is
thetotal (longitudinal) momentum, M, isthe CAM of the
2le
me3 333
isthe so-called generalized perveance, which takes into ac-

count the space charge.

boundary particle with the offset r,,, and K =
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Figure 1: Schematic illustration of the uncoupled-to-circular beam adapter: horizontally and vertically polarized modes
are transformed into circular modes of opposite helicities. Blue and red dots represent particles with smaller or r actions.
Arrows on the circular mode portrets show particle momenta, proportional to the offsets. For simplicity, all the phase
portrets are depicted as circles; generally, tilted ellipses are mapped onto each other. Direction of externa arrows =>
specify the direction of transformation. Reverse direction of both upper and lower arrows (<=) would correspond to the

reverse, circular-to-uncoupled adapter.

7 DIAGONALIZATION OF BEAM
MATRIX

The beam matrix
Lij = (wizj)

describes the beam distribution. If M is atransfer matrix,
then the new X-matrix is MXMT. The uncoupled state
is described by the block-diagonal X-matrix in the origi-
nal Cartesian coordinates; its 4D emittance is a product of
the 2D emittances. Normally the phase distributionsare ho-
mogeneous, in this case the X-matrix is diagona in the
matched uncoupled basis (the transfer matrix in this case
M=V-1

2 - Diw(srasrasy)E?JL (27)

where Diag(...) isadiagonal matrix with elementslisted as
the arguments.  In the same way, the X-matrix of a round
beam is diagonal in the matched circular basis.
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The X-matrix of a round beam can be expressed in
rotation-invariant terms:

=5 (o %) ==(
J:(_Ol é)

This beam matrix is diagonalized by the circular basis
with

(r?)  (7p) ) :
() @ )’
(28)

PR ) R )
() (p?) — ()2 (r2)(p?) — (7p)>
(29)
leading to
Y= Di&\](&‘l,fl,fg,fg) (30)
with the emittances
2610 = (M) ++/(r2)(p?) — (7FP)%2 > 0. (3D



These partial emittances are preserved by any symplectic  [7] S. Henderson et a. in Proc. Part. Acc. Conf., New York,
transformation. 1999, p. 410.

The total 4D emittance isaproduct of these partial emit-
tances:

de = deren = (1) (p?) — (Fp)? — (M)? (32)

[S. Nagaitsev, A Shemyakin]. The 4D emittance in terms
of the canonical and kinetic momenta are absolutely identi-
cal: atransfer from one to another is equivalent to rotation
imposed on the beam as awhol e, which does not change the
total emittance.

8 ROUND BEAMSFOR CIRCULAR
COLLIDERS

For circular colliders, round beams in the interaction re-
gion (IR) are known to be beneficial: angular momentum
preservation allows to increase the beam-beam tune shift
and so the luminosity. Conventional round-beams schemes
requiree, = ¢, and v, = v, Another approach to
get the beams round, the Mobius accelerator [5], based on
beam rotator optics[6], is studied experimentally at CESR
[7]. This scheme also leads to emittance identity and effec-
tive tune degeneration:x the resulting normal tunes are in-
evitably separated by 1/2.

Matched adapters bounding the IR opens a way that is
free from all these limitations.

Uncoupled Beams Round Beams Uncoupled Beams

e
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Figure2: Beam Rounder

This beam rounder allowsto have:
e round beam insideit;

o the same uncoupled beam outsideit, as it was without
the rounder;

e rotation-invariant revolution matrix;

o all thesefeaturesare kept for any tunes, emittancesand
the solenoidal field inside.
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