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I review and compare various techniques to obtain the value of the QED coupling, α, at the Z
pole. GigaZ precisions would require a much more accurate determination than available today. A
combination of the virtues of current methods may help to achieve this goal.

The value of the QED coupling constant at Z pole energies,

α(MZ) = α
1−∆α(MZ) , (1)

continues to induce the dominant theoretical uncertainty in the interpretation of the observables
from LEP 1 and the SLC. A future linear e+e− collider with GigaZ [1, 2] capability would be able to
greatly improve the current measurements, with α(MZ) ultimately dominating the overall uncer-
tainty. Therefore, it would be essential to improve the present error, δα(MZ)/α(MZ) ≈ ±2×10−4,
by at least a factor of two or three. While the discussion will be limited to α(MZ), in its essence
it also applies to the two-loop hadronic uncertainty in the muon anomalous magnetic moment.

All methods and renormalization schemes to determine α(MZ) utilize experimental data up to
some cut-off, scut, beyond which perturbative QCD (PQCD) is evoked. They differ due to differ-
ences in the data sets and treatments; the choice of scut; the reference renormalization scheme;
the option to add experimental information from τ-decays [3] (assuming isospin invariance);
space-like vs. time-like integration; the treatment of heavy quarks; the use of a QCD sum rule [4]
and/or a resummation optimization; and so on.

In terms of the photon polarization function, Πγ(s), ∆α is given by,

∆α(s) = −4πα
[
Π′γ(s)−Π′γ(0)

]
(on-shell scheme), ∆α̂(µ) = 4παΠ̂γ(0) (MS scheme).

(2)
At the one-loop level in perturbation theory one finds for a fermion of charge Qf (Nfc is the color
factor),
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(MS). (3)

Numerically, α−1(MZ) ∼ 129 and α̂−1(MZ) ∼ 128. Alternatively, the on-shell quantity can be
represented by a once subtracted dispersion relation (SDR),

∆α(s) = −4αs
∞∫

4m2
π

ds′
ImΠ′γ(s′)

s′(s′ − s − iε) . (4)

In the case of hadrons, R(s) = 12π ImΠ′γ(s), and in the standard SDR approach one has,

∆α(5)had(M
2
Z) = −

αM2
Z

3π
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, (5)
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Table I Comparison of QCD analyses. The values and uncertainties quoted in the original papers are
adjusted to αs(MZ) = 0.120 (fixed). The quark mass uncertainty in the BF-MOM scheme is from the pole
masses which cannot be improved. The UDR approach uses MS masses; their error can be expected to
decrease significantly in the future. The theory errors in the SDR and UDR approaches include the
uncertainty introduced by assuming quark-hadron duality near the cut-off of the dispersion integrals.
The PQCD error in the BF-MOM approach has not been estimated, yet.

SDR BF-MOM UDR

quantity R(s) D(−s) β(µ)
∆α(5)had 0.02770 0.02773 0.02779

quoted uncertainty 0.00015 0.00018 0.00020

αs -dependence linear approximation not available fully analytic

contribution from J/Ψ resonances 65% 15% 0%

error from quark masses 0 0.00010 0.00015

error from data 0.00015 0.00015 0.00011

theory error 0.00002 (0) 0.00007

scut 1.8 GeV 2.5 GeV 1.8 GeV

reference [10] [12] [5]

where the superscript indicates application to all quarks except the top. In the MS scheme it is
more natural to work with an unsubtracted dispersion relation (UDR) [5],

∆α̂(3)had(scut) = α
3π

scut∫
4m2

π

R(s)ds
s − iε

︸ ︷︷ ︸
DATA

+2α
2π∫
0

dθ Π̂(3)γ (θ)

︸ ︷︷ ︸
PQCD

, (6)

where the second integral is along a circle with radius s = scut. Since typical values for
√
scut are

1.8 GeV [6] and 2.5 GeV [7], one only needs to include the three light quarks in Eq. (6). One then
uses an analytical solution [5] to the order αα3

s and α2 renormalization group evolution (RGE) to
decrease µ2 = scut to µ2 = m̂2

c(m̂c) (the MS charm mass) where one matches the effective field
theories with three and four effective quark flavors. The matching is performed at order αα2

s at
which subtle effects from internal charm quark loops have to be taken into account. However, well
below the charmonium threshold these are small and strongly decoupling despite m̂c < scut. Then
one evolves up in energy and includes the τ-lepton and the b-quark. However, this is successful
only when a short-distance quark mass definition (such as MS) is used. Transition to the on-shell
mass definition would introduce large π2 terms, rendering application to bottom (charm) quarks
questionable (impossible). Thus, in the UDR approach bottom and charm effects can be described
entirely within PQCD, avoiding complications at heavy quark resonances. On the other hand, in
the SDR approach one has to abandon PQCD in the vicinity of resonance regions.

Focussing on only one quark flavor at a time, one could relate the integral expression of the SDR
approach to the analytical expressions [5] of the UDR approach. The resulting equation has the
form of a specific type of QCD sum rule which could be used to determine m̂c and m̂b. However,
this is only the first entry in an infinite series of sum rules [8] — and not the one which uses the
data most efficiently. This implies that combining the UDR approach with an appropriate QCD
sum rule is a recipe to minimize the uncertainties from the b and c quark sector [9]. Another
advantage of the UDR approach is that all theoretical contributions are available as explicit ana-
lytical expressions, with no need for a numerical integration. In particular, the αs and quark mass
dependences are all taken into account. This is important for global analyses in which these pa-
rameters enter in many different places, causing non-trivial and non-linear correlations. In the
SDR approach only a crude linear approximation [10] is available.

Another way to reduce the impact of the resonance region is to use the analytic structure of
Πγ and to work in the Euclidean (space-like) region [7],

∆α(5)(M2
Z) =

[
∆α(5)(M2

Z)−∆α(5)(−M2
Z)
]

︸ ︷︷ ︸
PQCD

+
[
∆α(5)(−M2

Z)−∆α(5)(−scut)
]

︸ ︷︷ ︸
PQCD

+∆α(5)(−scut)︸ ︷︷ ︸
DATA

. (7)
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The first term is the analytical continuation from the Minkowski (time-like) to the Euklidean re-
gion. The second term represents the RGE in the perturbative Euklidean domain in which R(s)
is replaced by the Adler D function. It is computed in the gauge dependent background field
momentum subtraction (BF-MOM) scheme up to three-loop order [11]. Unlike the MS scheme, the
BF-MOM scheme is a mass-dependent renormalization scheme. Thus both, the UDR and BF-MOM
approaches, depend explicitly on the quark masses. In the latter, the quark pole masses are used.
This is disadvantageous since a long-distance mass definition such as the pole mass has an in-
trinsic renormalon ambiguity of order ΛQCD. The heavy quark sector also contributes via the last
term in Eq. (7) where, like in the SDR approach, the resonance region complicates the analysis.
However, in the BF-MOM approach the resonance contribution is suppressed by about a factor of
four [12]. Note, that in this approach there may be a subtle correlation between the uncertainty
from the theory (quark masses) and data (resonance region) parts.

The advantage of splitting the data and theory parts as in Eq. (7) is that no reference to global
or local quark hadron duality is needed. In contrast, the SDR and UDR approaches both have an
explicit momentum cut-off where the transition from data (hadrons) to theory (quarks) occurs. In
principle, this could give rise to a significant cut-off dependence, especially when non-perturbative
(NP) effects produce a strongly oscillating form of the hadronic cross section, i.e. R(s). Such
oscillations arise neither in PQCD nor in the operator product expansion (OPE) which accounts
for a certain class of NP effects. Clearly, the cut-off dependence should be kept small. However, it
is not necessarily optimal to demand that it vanishes. Indeed, the importance of duality violating
effects has been overemphasized in the past, and there are good reasons to believe that they are
small [13]. While unidentified sources of (OPE breaking) NP effects are hazardous, they are not
the only source of uncertainty. For example, a poorly converging perturbative expansion can be
even more perilous.

Table I summarizes the comparison of the three methods defined by Eqs. (5), (6), and (7). Table II
gives a breakdown of the theory error in α−1(MZ) in the UDR approach. The corresponding error
in ∆α is obtained by multiplying by α.

Table II Error breakdown in the UDR approach. The quoted non-perturbative QCD uncertainty is due to
OPE breaking effects typically of the form e−C/αs , where C is in general complex leading to an oscillating
R(s). Davier and Höcker [10] fit a variety of oscillating curves to the experimental R(s) around scut and
conclude ∆α−1 = ±0.002. Here I use a more conservative estimate [5]. There are other non-perturbative
(higher twist) effects within the OPE. These are of O(α2

s /π2Λ4
QCD/s

2
cut;α2

s /π2m2
Kf 2

π/s
2
cut) ∼ 2× 10−7 and of

O(Λ4
QCD/m4

c ;Λ
4
QCD/m

4
b) ∼ −3 . . .− 7× 10−6, respectively, and can be neglected. The parametric error due

to the imperfect knowledge or αs is excluded here; the αs dependence is fully included in electroweak fits.

sector uncertainty comment

perturbative QCD u, d, s 0.005 missing O(αα3
s ) corrections

perturbative QCD c, b 0.004 missing O(αα3
s ) corrections

perturbative QCD RGE 0.003 missing O(αα4
s ) corrections

non-perturbative QCD u, d, s 0.006 quark-hadron duality

total QCD u, d, s, c, b 0.009 theory

MS quark mass c 0.019 m̂c = 1.31± 0.07 GeV

MS quark mass b 0.002 m̂b = 4.24± 0.11 GeV

total quark masses c, b 0.021 parametric

R(s) [10] u, d, s 0.015 data

grand total u, d, s, c, b 0.027 data + theory + parametric

The available data in the region mc <∼
√
s <∼ 2mc are rather poor, and one would like to replace

them by a robust theoretical description as far as possible. It is therefore desirable to improve
the UDR approach by lowering the cut-off dependence and to decrease ones exposure to duality
violating effects. Conversely, the BF-MOM approach would benefit by utilizing a short-distance
mass definition. Furthermore, as a matter of practice, it may be unwieldy to properly correlate
the uncertainties from resonances and quark masses; this may eventually result in a somewhat
larger uncertainty compared to the UDR approach. Nevertheless, it appears that within both, the
UDR and BF-MOM methods, one has the potential to obtain a solid theory driven evaluation of
α(MZ). In contrast, the more traditional SDR approach with its strong reliance on the complicated
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function R(s) seems inadequate for the high demands of GigaZ precisions.
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