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An approximation that is often used in fits to reactor and atmospheric neutrino data and in some
studies of future neutrino oscillation experiments is to assume one dominant scale, ∆m2

atm ∼ 3 ×
10−3 eV2. Here we investigate the corrections to this approximation arising from ∆m2

sol, assuming

the large mixing angle solution. We show that for values of sin2(2θ13) in the range of interest
for long-baseline neutrino oscillation experiments terms involving ∆m2

sol can be comparable to the

terms involving∆m2
atm. Accordingly, we emphasize the importance of performing a full three-flavor,

two-∆m2 analysis of the data on νµ → νe, νe → νµ , ν̄e → ν̄µ oscillations.

1. Introduction

There is increasingly strong evidence for neutrino oscillations, and thus neutrino masses
and lepton mixing. All solar neutrino experiments that have reported results (Homestake,
Kamiokande, SuperKamiokande, SAGE, GALLEX/GNO and SNO) show a significant deficit in the
neutrino fluxes coming from the Sun [1]. This deficit can be explained by oscillations of the νe’s
into other weak eigenstate(s). The currently favored region of parameters to fit this data is the
large mixing angle solution (LMA) with tan2 θ12 ∼ 0.4 and ∆m2

sol � 5× 10−5 eV2 [1, 2]. Solutions
yielding lower-likelihood fits to the data include the LOW solution with ∆m2

sol ∼ 10−7 eV2 and
essentially maximal mixing and the small mixing angle solution (SMA), with tan2 θ12 ∼ 4 × 10−4

and ∆m2
sol � 5× 10−6 eV2 Another piece of evidence for neutrino oscillations is the atmospheric

neutrino anomaly, observed by Kamiokande, IMB, Soudan, SuperKamiokande with the highest
statistics, and MACRO [3]. The SuperK experiment has fit its data by the hypothesis of νµ → ντ
oscillations with ∆m2

atm ∼ 3 × 10−3 eV2 and maximal mixing, sin2 2θatm = 1. The possibility
of νµ → νs oscillations involving light electroweak-singlet (“sterile”) neutrinos has been disfa-
vored by SuperK, and the possibility that νµ → νe oscillations might play a dominant role in
the atmospheric neutrino data has been excluded both by SuperK and, for the above value of
∆m2

atm, by the Chooz and Palo Verde reactor antineutrino experiments. The K2K long-baseline
neutrino experiment between KEK and Kamioka has also reported results [4] which are consis-
tent with the SuperK fit to its atmospheric neutrino data. The LSND experiment has reported
evidence for ν̄µ → ν̄e and νµ → νe oscillations with ∆m2

LSND ∼ 0.1 − 1 eV2 and a range of possi-
ble mixing angles. This result is not confirmed, but also not completely ruled out, by a similar
experiment, KARMEN. The solar and atmospheric data can be fit in the context of three-flavor
neutrino oscillations; global fits include [5]. We shall work within this context of three-flavor
neutrino mixing. The fact that these inferred values of neutrino mass squared differences satisfy
the hierarchy |∆m2

sol| << |∆m2
atm| has led to using the approximation where one neglects ∆m2

sol

compared with ∆m2
atm for most analyses of atmospheric neutrino data. For certain neutrino os-

cillation transitions, such as νµ → ντ , this is a good approximation. It is worthwhile, however,
to have a quantitative evaluation of the corrections to this approximation and a determination
of the ranges of parameters where these corrections could become significant. This is relevant
to planning for both neutrino factory and conventional beam experiments [6]-[8]. For sufficiently
small values of the lepton mixing angle θ13 (defined below in eq. (1)), e.g., sin2 2θ13 ∼ 10−2, and
sufficiently large values of ∆m2

sol, e.g., ∆m2
sol ∼ 10−4 eV2, this approximation is not reliable for

certain oscillation channels such as νµ → νe. Here we are referring to CP-conserving quantities;
the one-∆m2 approximation is, of course, not used for calculating CP-violating quantities since,
since the CP violating effects disappear in this limit. Since the values of sin2(2θ13) and ∆m2

sol
for which the one-∆m2 approximation breaks down are in the range of interest for future exper-
imental searches for νµ → νe via both conventional neutrino beams generated by pion decay and
via neutrino beams from neutrino “factories” based on muon storage rings, this complicates the
analysis of the sensitivity and data analysis from these experiments.

E106



2

2. Neutrino Oscillations on Long Distances

In the framework of three active neutrinos, the unitary transformation relating the mass eigen-
states νi, i = 1,2,3, to the weak eigenstates νa is given by νa =

∑3
i=1Uaiνi where the lepton

mixing matrix is

U = R23KR13K∗R12K′ =



c12c13 s12c13 s13e−iδ
−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


K′ (1)

Here Rij is the rotation matrix in the ij subspace, cij = cosθij , sij = sinθij , K = diag(e−iδ,1,1)
and K′ = diag(1, eiδ1 , eiδ2) involves further possible phases (due to Majorana mass terms) that do
not contribute to neutrino oscillations (as can be seen from the invariance of the quantity Kab,ij
below under neutrino field rephasings). One can take θij ∈ [0, π/2] with δ ∈ [0,2π).

In vacuum, the probability that a weak neutrino eigenstate νa becomes νb after propagating a
distance L (assuming that E >> m(νi) and the propagation of the mass eigenstates is coherent)
is

P(νa → νb) = δab − 4
3∑

i>j=1

Re(Kab,ij) sin2φij

+4
3∑

i>j=1

Im(Kab,ij) sinφij cosφij (2)

where Kab,ij = UaiU∗biU∗ajUbj , ∆m2
ij =m(νi)2 −m(νj)2 and φij = ∆m2

ijL/4E
In matter the evolution of the weak eigenstates is given by:

i
d
dx

ν =
(

1
2E
UM2U† + V

)
ν (3)

where

ν =

νeνµ
ντ


 = U


ν1

ν2

ν3


 (4)

M2 =


m2

1 0 0
0 m2

2 0
0 0 m2

3


 , V =



√

2GFNe 0 0
0 0 0
0 0 0


 (5)

We show here results for the case of large pathlengths and the νµ → νe transition relevant to
the existing data on atmospheric oscillations. For simplicity, we take the CP-violating phase equal
to zero here, but it is straightforward to include it.

These results can also be applied to data on νe → νµ that might become available with a possi-
ble future neutrino factory. In Figure 1 we plot P(νµ → νe) as a function of L/E for sin2 2θ23 = 1,
∆m2

32 = 3× 10−3 eV2, sin2 2θ13 = 0.04, sin2 2θ12 = 0.8, and ∆m2
21 = 2× 10−4 eV2, the upper end

of the LMA region. The higher-frequency oscillations are driven by the terms involving sin2φ32

while the lower-frequency oscillation is driven by the terms involving ∆m2
21. The one-∆m2 ap-

proximation is shown as the dashed curve; of course, this lacks the low-frequency oscillation
component. One sees that the full calculation differs strikingly from the result of the one-∆m2

approximation. Even for the best-fit LMA solution, the effect of ∆m2
21 can be large for large path-

lengths, and this would affect the νµ ↔ νe oscillations in atmospheric neutrino data, as shown
in Figure 2, for which we take the central values of sin2 2θ21 and ∆m2

21 in the LMA fit, and other
parameters the same as in the previous figure. Note that for the dominant νµ → ντ transition
in the atmospheric neutrinos, ∆m2

21 effects are not so important; this is clear from the fact that
this transition does not directly involve νe. We next show, in Figure 3, the result of integrating (3)
in the full three-flavor mixing scenario and using the actual density profile of the Earth. For this
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Figure 1: Plot of P(νµ → νe) as a function of L/E for sin2 θ23 = 1, ∆m2
32 = 3× 10−3 eV2, sin2 2θ12 = 0.8,

and ∆m2
21 = 2× 10−4 eV2, and sin2 2θ13 = 0.04.
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Figure 2: Plot of P(νµ → νe) as a function of L/E for sin2 θ23 = 1, ∆m2
32 = 3× 10−3 eV2, central LMA

values sin2 2θ12 = 0.8 and ∆m2
21 = 5× 10−5 eV2, and sin2 2θ13 = 0.04.

figure we use sin2 2θ23 = 1, ∆m2
32 = 3 × 10−3 eV2, sin2(2θ12) = 0.8, ∆m2

21 = 5 × 10−4 eV2, and
sin2(2θ13) = 0.04. As expected, the∆m2

21 corrections are big for low energies and large distances.
For the choice of a large distance, L = 104 km (shown in Figure 3), we observe a very significant
difference between the full calculation and the one-∆m2 approximation. This shows again (as do
the recent illustrative studies in Ref. [9]), that it is useful to carry out a more complete analysis
of the SuperK and other atmospheric neutrino data with not just three-flavor oscillations, but
also two ∆m2 values included. Although the SuperK fit to its data shows that the νµ ↔ νe oscil-
lations make a small contribution, it is important to include this contribution correctly, and the
one-∆m2 approximation is not, in general, reliable for this transition. Presently, there is a very
extended planning effort for experiments based on either very high intensity conventional neu-
trino beams or beams from muon storage rings. These will probe the νe−νµ transition with very
high sensitivity. In this case the one-∆m2 approximation used in many planning studies may well
be inadequate, and one should use a more general theoretical framework. If ∆m2

21 and sin2 2θ21

are at the upper end of the LMA region, then the one-∆m2 approximation can break down. As
a numerical example, one can consider the parameter set sin2 2θ12 = 0.8, ∆m2

21 = 2× 10−4 eV2,
sin2 2θ13 = 0.01, δ = π/6, with the usual SuperK values ∆m2

32 = 3× 10−3 eV2 and sin2 2θ23 = 1.
Further, take the JHF-SuperK pathlength L = 295 km and narrow-band-beam energy E = 0.7 GeV.
Then, if one were to evaluate the νµ → νe oscillation probability using the one-∆m2 approxima-
tion, one would obtain P(νµ → νe) = 5.0 × 10−3. However, correctly including the contribution
from the term involving sin2φ21, one gets an oscillation probability that is more than twice as
large as the one predicted by the one-∆m2 approximation: P(νµ → νe) = 1.4××10−2 This clearly
shows that for experimentally allowed input parameters involving the LMA solar fit, and in par-
ticular, for a value of sin2 2θ13 that can be probed by the JHF-SuperK experiment and others that
could achieve comparable sensitivity, the one-∆m2 approximation may not be valid. Thus, it is
important that the KamLAND experiment will test the LMA and anticipates that, after about three
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Figure 3: Plot of P(νµ → νe) as a function of E for sin2 θ23 = 1, ∆m2
32 = 3× 10−3 eV2, and L = 104 km,

with other input values as shown. This calculation takes account of the full density profile of the earth.

years of running, it will be sensitive to the level ∆m2
sol � 10−5 eV2. If, indeed, the LMA parameter

set is confirmed by KamLAND, then it may well be necessary to take into account three-flavor
oscillations involving two independent ∆m2 values in the data analysis for the JHF-SuperK ex-
periment and other νµ → νe neutrino oscillation experiments that will achieve similar sensitivity.
This point is thus certainly also true for long-baseline experiments with a neutrino factory mea-
suring νe → νµ , ν̄e → ν̄µ oscillations, since they anticipate sensitivity to values of sin2 2θ13 that are
substantially smaller than the level to which the JHF-SuperK collaboration will be sensitive, and
as one decreases θ13 with other parameters held fixed, the sin2φ21 corrections to the one-∆m2

approximation become relatively more important.
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