Higgs Searches at LEP (2)

Combination & non-SM Higgs Bosons

W. Adam

HEPHY, Vienna

on behalf of the four LEP collaborations

- Combined results of the search for the SM Higgs
- Search for MSSM neutral Higgs Bosons
- Search for H^+H^-
- General 2HDMs and special decay channels
- Conclusions

All results shown in this talk are preliminary !!!
The basic approach:
reconstructed mass spectra
(sum of expt’s and channels irrespective of separation power)

... but that’s only part of the story!
SM - combined

ALEPH

≈ 209 pb\(^{-1}\) of ’00 data*
+ previous years

DELPHI

≈ 214 pb\(^{-1}\) of ’00 data*
+ previous years

L3

≈ 201 pb\(^{-1}\) of ’00 data*
+ previous years

OPAL

≈ 219 pb\(^{-1}\) of ’00 data*
+ previous years

* indicative; data of last few days not yet used in combined results
SM - combined

Classification of the LEP result for different \(m_H \):

Channels

Likelihood ratio vs. \(m \)

Separation of B- and S+B lines indicates power

Median S+B line for varying hypotheses

Fixed mass signal creates “cross-talk” to other hypotheses!
SM - combined

Single event weights

Weight evolution reflects mass resolution and \(\sigma(m_h) \)

summed to obtain \(\ln Q \)
SM - combined

Distribution of all event weights

∫ gives

Signal size is limited by cross section and preselection efficiencies!

Points are correlated!
SM - combined

-2\ln Q / channel for \(m_h = 115 \text{GeV} \)

-2 ln Q / channel for \(m_h = 115 \text{GeV} \)

Hll
Hvv
Hqq
H\tau\tau + \tau\tau Z

Observed
Background
signal

ee, \(\mu\mu \) channels are clean, but low \(\sigma \times \text{BR} \)!

Reminder: SM H branching ratios
SM - combined

Exclusion?

- Check CL_S

(conservative estimate for $S+B$ confidence level)

Hard to exclude with an excess of high weight events!

Note exclusion potential!
Or a hint of a Higgs?

- Check $1-CL_B$
 (compatibility with B-hypothesis)

Definition of n-σ lines:

$$1 - CL_b = 1 - \int_{-n}^{+n} G(x; 0, 1) \, dx$$

Incompatibility with B-hypothesis: 2.9σ
(uncertainty $\approx 0.2\sigma$)
SM - combined

3-σ discovery potentials

Probability to discover a Higgs at mass m_H

... /channel and ...

... /experiment
SM - combined

Evolution September → November

If there was no Higgs in reach ...

Significance of the 114 / 115 GeV hypotheses on Sep. 5

... or one at 114 or 115 GeV

If there was no Higgs in reach ...

Additional Luminosity @ 206.6 GeV (pb⁻¹)

Expected 1-CLb
MSSM (h, A)

Neutral Higgs bosons in the MSSM

- Assume CP conservation

 - Two CP even states h, H
 (defined by $m_h < m_H$)
 - One CP odd state A

Production: main mechanisms at LEP

- **Higgsstrahlung** hZ
 (similar to SM H)

 \[
 e^- e^+ \rightarrow Z^+ \rightarrow h \propto \sin(\beta - \alpha) \\
 e^- e^+ \rightarrow Z^+ \rightarrow A \propto \cos(\beta - \alpha)
 \]

- **Pair production** hA

Assume CMSSM with 7 parameters

- m_{SUSY} (sfermion masses at EW scale)
- m_2 (gaugino masses at EW scale, $\rightarrow m_1$)
- m_{gluino}
- X_t (off-diagonal in stop mixing matrix)
- μ (Higgs mass parameter)
- $\tan \beta$ (ratio of vacuum expectation values)
- m_A
MSSM (h, A)

Still a lot of parameters → “benchmarks”

- “no mixing”: $X_+ = 0$
 - $m_{\text{SUSY}} = 1\text{TeV}$, $m_2 = -\mu = 200\text{GeV}$, $m_{\text{gluino}} = 800\text{GeV}$, $0.4 < \tan\beta < 50$, $m_A < 1\text{TeV}$
 - maximise reach

- “mh max”: $X_+ = 2m_{\text{SUSY}}$ (FD* scheme)
 - other parameters as above
 - maximise m_h for each $\tan\beta$

- “large μ”: highlight non-bb decays

* Two calculations at two loop level
 - Feynman-diagrammatic approach (FD)
 - Renormalisation group approach (RG)

Good agreement, but different renormalisation schemes!
MSSM (h, A)

m_h-max benchmark

conservative assumptions for tanβ exclusion

$$m_h > 89.9\text{GeV} \\ (\text{exp}:93.8)$$

$$m_A > 90.5\text{GeV} \\ (\text{exp}:94.1)$$

$$\tan\beta \notin [0.52, 2.25] \\ (\text{exp}:[0.48, 2.48])$$

Branching ratios to b-pairs \rightarrow
MSSM (h, A)

m_h-max benchmark

same scenario presented in the $\tan\beta$-m_A and ...

... m_h-m_A plane

W. Adam: Higgs Searches at LEP (2) Aspen, Jan. 8, 2001
MSSM (h, A)

no-mixing benchmark

DELPHI

Preliminary

\(\sqrt{s} \) from 130 to 208.2 GeV

- \(m_{t_{top}} = 175 \text{ GeV}/c^2 \)
- \(M_{\text{supy}} = 1 \text{ TeV}/c^2 \)
- \(M_{2} = -\mu = 200 \text{ GeV}/c^2 \)
- \(\tan \beta \geq 0.4 \)
- No mixing

Experimentally excluded

Theoretically forbidden

h→AA dominant, low BR(A→bb)

W. Adam: *Higgs Searches at LEP (2)*

Aspen, Jan. 8, 2001
Charged Higgs

- Consider general 2HD model
 - (in MSSM: $m_{H^±} > m_{W^±}$ at tree level)
 - cross section determined by $H^±$ mass (at tree level)
 - search assumes $\text{BR}(\rightarrow \tau \nu) + \text{BR}(\rightarrow cs) = 1$
 \rightarrow search for hadronic, semi-leptonic and purely leptonic topologies

irreducible background: W^+W^-

H$^±$ cross section

\[\text{e}^+\text{e}^- \rightarrow H^+H^- \]

at $E_{CMS} = 206\text{GeV}$
Charged Higgs

Combined LEP exclusion

W-mass “hurdle” (partially) passed

L3 flavour independent 4-jet, equal mass

ALEPH preliminary
L=178.3 pb⁻¹
Data = 889
MC = 893.77

ALEPH charged Higgs 4-jet channel

DELPHI charged Higgs analysis
Flavour independent

Motivation:
Reduce model dependence:

- limits on S^0Z^0 scalar production
- limits in general 2HD models
- e.g.: flavour independent search for hadronic decays of $S^0 (\rightarrow qq$ or gg)

Exclusion for a type II 2HDM

Similar, more generally, for $BR_{\text{had}} \times \sigma/\sigma_{\text{SM}}$
Fermiophobic

Look for $h \rightarrow \gamma \gamma$

Tiny in SM

Motivation e.g. type I 2HD models:
- one Higgs doublet doesn't couple to fermions
- coupling $hff \propto \cos \alpha$
 ($\alpha =$ mixing angle in CP even Higgs sector)
- production via Higgsstrahlung

![ADLO Combined Photonic Higgs Search](image)

Upper Limit on $B(h^0 \rightarrow \gamma \gamma)$

- 5 September Update
- Excluded Region

Median expected

- +2 sigma expected
- -2 sigma expected

Limit = 107.7 GeV

exp.: 105.8 GeV

assumes SM cross section

(otherwise use $\sin^2(\beta-\alpha)$)
Extend search to $h_A - 2HDM(I)$

Additional topologies include:

- $\gamma\gamma A$ (long-lived) and $\gamma\gamma bb$ from h_A
- $\gamma\gamma Z$ from h_A with $A \rightarrow h_Z$
- 6b final state from h_A with $h \rightarrow AA$

exclusion for 2HDM(I):
complementarity $h_Z - h_A$
(H-H-interactions: potential A)

W. Adam: Higgs Searches at LEP (2) Aspen, Jan. 8, 2001
Invisible Higgs decays

Typical scenario:

- $h \rightarrow \text{LSPs in SUSY}$
- look for hZ production
- exp. similar to the $Z \rightarrow \nu\nu, h \rightarrow bb$ channel, but no selection of b-tagged events

For BR=1: $m > 113.7\text{GeV}$ (exp: 112.8GeV)
Conclusions

- The SM Higgs search shows an excess in data compatible with a Higgs boson mass of about 115GeV.

No more data from LEP
→ be patient !!!

- A multitude of other Higgs channels are covered by LEP searches (in particular MSSM neutral Higgs bosons).

- Trend to investigate more models, to perform parameter scans and search for unusual decay channels.

The LEP accelerator may have stopped, but the analysis teams are still active
→ stay tuned !!!