The BaBar sin22β Measurement

James Weatherall
University of Manchester / SLAC
HF+CP Violation Workshop,
Durham, 19/9/00
Outline

- The BaBar detector
- CP Violation and the UT
- Measuring CP Violation
- Selection of CP events
- Accounting for Δz resolution
- B-Tagging and mistag rates
- Measurement of CP-violating asymmetries
- Conclusion
PEP-II and BaBar

- First e^+e^- collisions in Summer 1998
- Detector in place Spring 1999 with first events May 26, 1999
- Luminosity as high as 2.28×10^{33} cm$^{-2}$s$^{-1}$ (design = 3.0)
- Result based on ~ 10 fb$^{-1}$ of data
- ~ 9 fb$^{-1}$ at the $\Upsilon(4S)$ (19×10^6 B’s)
The BABAR Detector

- Superconducting Coil (1.5T)
- Silicon Vertex Tracker (SVT)
- Drift Chamber (DCH)
- CsI Calorimeter (EMC)
- Instrumented Flux Return (IFR)
- Cherenkov Detector (DIRC)

e⁻ (9 GeV)
e⁺ (3 GeV)
The Wolfenstein parametrization of the CKM matrix

\[
\begin{pmatrix}
1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\rho - i\eta) \\
-\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix}
\]

where \(\lambda \) and \(A \) are better determined than \(\rho \) and \(\eta \)

The unitarity of the CKM matrix provides six constraints, the most useful of which

\[V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \]

is called the unitarity triangle:

![Diagram of the unitarity triangle]

The area of the unitarity triangle, the “Jarlskog Invariant”, is proportional to the strength of CP violation in the Standard Model:

\[J = c_{12} c_{23} c_{13}^2 s_{12} s_{23} s_{13} \sin \delta \]
The Y(4S) resonance decays to $B \bar{B}$ pairs in a coherent $L=1$ state. At PEP-II, $E(e^-) = 9$ GeV and $E(e^+) = 3.1$ GeV yielding a boosted $\Upsilon(4S)$ with $\beta \gamma = 0.56$.

The mean decay distance Δz between the B decay vertices is ~ 250 μm, allowing determination of the time order of the decays (since $\sigma(\Delta z) \sim 90$ μm).

Measure the flavour of a $B^0 (\bar{B}^0)$ decay (B_{tag}) at time t, then at that time, the flavour of the other $\bar{B}^0 (B^0)$ is known.

Reconstruct second B^0 into a CP eigenstate:

$$f_{\pm}(\Delta t; \Gamma, \Delta m_d, D \sin 2\beta) =$$

$$\frac{1}{4} \Gamma e^{-\Gamma |\Delta t|} \left[1 \pm D \sin 2\beta \times \sin \Delta m_d \Delta t \right]$$

Where the dilution $D = (1-2w)$ is derived from the measured mistag fraction w.

Measuring CP Violation at the Y(4S)
Overview of the analysis

Reconstruct the B decays to CP eigenstates and tag the flavor of the other B decay

D_z

B_{tag} B_{CP}

Select B_{tag} events using, primarily, leptons and K's from B hadronic decays & determine B flavor

Select B_{CP} events ($B^0 \rightarrow J/\psi \ K_S$,etc.)

Measure the mistag fractions w_i and determine the dilutions $D_i = 1 - 2w_i$

Measure Δz between B_{CP} and B_{tag} to determine the signed time difference Δt between the decays

Determine the resolution function for Δz

$$R(\Delta t; \hat{a}) = \sum_{i=1}^{i=2} \frac{f_i}{\sigma_i \sqrt{2\pi}} \exp\left(-(\Delta t - \delta_i)^2\right) / 2\sigma_i^2$$

$$\mathcal{F}_\pm(\Delta t ; \Gamma, \Delta m_d, \mathcal{D} \sin 2\beta, \hat{a}) = f_\pm(\Delta t ; \Gamma, \Delta m_d, \mathcal{D} \sin 2\beta) \otimes R(\Delta t ; \hat{a})$$

$$\mathcal{A}_{CP}(\Delta t) = \frac{\mathcal{F}_+(\Delta t) - \mathcal{F}_-(\Delta t)}{\mathcal{F}_+(\Delta t) + \mathcal{F}_-(\Delta t)} \propto \mathcal{D} \sin 2\beta \times \sin \Delta m_d \Delta t$$
The B_{CP} sample

$J/\psi K_S (K_S \rightarrow \pi^+ \pi^-)$
124±12 events
purity 96%

$J/\psi K_S (K_S \rightarrow \pi^0 \pi^0)$
18±4 events
purity 91%

$\Psi(2S) K_S$
27±6 events
purity 93%
The resolution function for Δt

The time resolution is dominated by the z resolution of the tagging vertex.

The vertex resolution function is well-described by a five-parameter sum of two gaussians:

$$
\mathcal{R}(\Delta t; \hat{\alpha}) = \sum_{i=1}^{i=2} \frac{f_i}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\Delta t - \delta_i)^2}{2\sigma_i^2}\right)
$$

In the likelihood fits, we use event-by-event time resolution errors. We introduce two scale factors S_1 and S_2:

$$
\sigma_i = S_i \sigma_{\Delta t}
$$

To account for $\sim 1\%$ of events with very large Δz, a third gaussian with a fixed width of 8ps, is included.

The parameters extracted from the fit are:

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_1 (ps)</td>
<td>-0.20 ± 0.06</td>
<td>from fit</td>
</tr>
<tr>
<td>S_1</td>
<td>1.33 ± 0.14</td>
<td>from fit</td>
</tr>
<tr>
<td>f_w (%)</td>
<td>1.6 ± 0.6</td>
<td>from fit</td>
</tr>
<tr>
<td>f_1 (%)</td>
<td>75</td>
<td>fixed</td>
</tr>
<tr>
<td>δ_2 (ps)</td>
<td>0</td>
<td>fixed</td>
</tr>
<tr>
<td>S_2</td>
<td>2.1</td>
<td>fixed</td>
</tr>
</tbody>
</table>
B^0 Decay Sample for w_i, Δm_d and Cross-checks

Hadronic sample

\[B^{-} \to D^{(*)0} \pi^{-}, J/\Psi K^{-}, \Psi(2S) K^{-} \]

2577\pm59

Purity \sim 86\%

Semileptonic sample

\[B^0 \to D^{(*)} \pi^+, D^{(*)} \rho^+, D^{(*)} a_1^+, J/\Psi K^*0 \]

B^0 -> D^* - l^+ \nu_l

7517\pm104

Purity \sim 84\%
Measurement of mistag fractions & Δm_d

- Fully reconstruct one B^0, B_{rec} in a flavour eigenstate mode
- Apply flavor-tagging algorithms to the rest of the event, which constitutes the potential B_{tag}
- Tagging categories:
 - Electron
 - Muon
 - Kaon
 - NT1
 - NT2
 } Lepton

 } Neural network

- Classify events as mixed or unmixed, depending on whether the B_{tag} has the same or opposite flavour as the B_{rec}
Particle ID and mis-ID

Electrons

- $20^\circ < \theta < 140^\circ$
- $0.5 \text{ GeV/c} < p_{\text{lab}} < 4.5 \text{ GeV/c}$

Muons

- For $17^\circ < \varphi < 155^\circ$

Kaons

- $1 < p_{\text{lab}} (\text{GeV/c}) < 3$
Neural Net Tagging

For events not selected in lepton or kaon categories
Time-dependent measurement of w_i & Δm_d

W_i from small Δt

Δm from oscillation frequency

Hadronic sample

Check: single-bin (time-integrated)

$$\chi_i = \chi_d + (1 - 2\chi_d)w_i$$

where

$$\chi_d = \frac{x_d^2}{2(1 + x_d^2)}$$,
$$x_d = \frac{\Delta m_d}{\Gamma}$$
Δm_d from the tag/mix likelihood fit

Hadronic decays

$\Delta m_d = 0.516 \pm 0.031$ (stat)
± 0.018 (syst) $\bar{\nu}$ ps$^{-1}$

Semileptonic decays

$\Delta m_d = 0.508 \pm 0.020$ (stat)
± 0.022 (syst) $\bar{\nu}$ ps$^{-1}$

Combined result

$\Delta m_d = 0.512 \pm 0.017$ (stat) ± 0.022 (syst) $\bar{\nu}$ ps$^{-1}$

[PDG: $\Delta m_d = 0.472 \pm 0.017$ $\bar{\nu}$ ps$^{-1}$]
Results of the tag/mix likelihood fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>hadronic</th>
<th>semileptonic</th>
<th>hadronic</th>
<th>semileptonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm_d [h ps$^{-1}$]</td>
<td>0.516 ± 0.031</td>
<td>0.508 ± 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w(Lepton)</td>
<td>0.116 ± 0.032</td>
<td>0.084 ± 0.020</td>
<td>0.136</td>
<td>0.133</td>
</tr>
<tr>
<td>w(Kaon)</td>
<td>0.196 ± 0.021</td>
<td>0.199 ± 0.016</td>
<td>0.064</td>
<td>0.210 ± 0.028</td>
</tr>
<tr>
<td>w(NT1)</td>
<td>0.135 ± 0.035</td>
<td>0.210 ± 0.028</td>
<td>0.023</td>
<td>0.066</td>
</tr>
<tr>
<td>w(NT2)</td>
<td>0.314 ± 0.037</td>
<td>0.361 ± 0.025</td>
<td>0.023</td>
<td>0.013</td>
</tr>
<tr>
<td>scale$_{\text{core, sig}}$</td>
<td>1.33 ± 0.13</td>
<td>1.32 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta_{\text{core, sig [ps]}}$</td>
<td>−0.20 ± 0.07</td>
<td>−0.25 ± 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{outlier}</td>
<td>0.016 ± 0.006</td>
<td>0.000 ± 0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\sum Q_i = 0.285$ \hspace{2cm} $\sum Q_i = 0.283$
Dilepton Mixing: Results

7.7 fb\(^{-1}\) on-resonance
1.1 fb\(^{-1}\) off-resonance

Dilepton sub-sample enriched in \(B^0\) with partial reconstruction of \(B^0 \rightarrow D^* \ell \nu\)

\[
\Delta m_d = (0.507 \pm 0.015\,\text{stat} \pm 0.022\,\text{syst}) \, \text{h ps}^{-1}
\]

[PDG: \(\Delta m_d = (0.472 \pm 0.017) \, \text{h ps}^{-1}\)]

Very Preliminary
The sin2β analysis was done blind to eliminate experimenters’ bias

- The amplitude in the asymmetry $A_{CP}(\Delta t)$ was hidden by arbitrarily flipping its sign and by adding an arbitrary offset
- The CP asymmetry in the Δt distribution was hidden by multiplying Δt by the sign of the tag and by adding an arbitrary offset

Allows systematic studies of tagging, vertex resolution and their correlations to be done while keeping the value of sin2β hidden
Extracting $\sin 2\beta$

- The Δt distribution of the tagged CP eigenstate decays, which is analyzed using maximum likelihood to extract the asymmetry $A_{CP}(\Delta t)$

B^0 and \bar{B}^0 tags

![Graph showing B^0 and \bar{B}^0 distributions vs Δt (ps)]
Extracting $\sin 2\beta$

Log likelihood function

$\sin 2\beta = 0.12 \pm 0.37\text{(stat)} \pm 0.09\text{(syst)}$

χ^2 for likelihood fit to binned data = 9.2 for 7 dof

$P (L < L_{\text{meas}}) = 20\%$

<table>
<thead>
<tr>
<th>sample</th>
<th>$\sin 2\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP sample</td>
<td>0.12 ± 0.37</td>
</tr>
<tr>
<td>$J/\psi K_S^0 (K_S^0 \rightarrow \pi^+\pi^-)$ events</td>
<td>-0.10 ± 0.42</td>
</tr>
<tr>
<td>other CP events</td>
<td>0.87 ± 0.81</td>
</tr>
<tr>
<td>Lepton</td>
<td>1.6 ± 1.0</td>
</tr>
<tr>
<td>Kaon</td>
<td>0.14 ± 0.47</td>
</tr>
<tr>
<td>MT1</td>
<td>-0.59 ± 0.87</td>
</tr>
<tr>
<td>MT2</td>
<td>-0.96 ± 1.30</td>
</tr>
</tbody>
</table>
Study of Statistical Error

Toy Monte Carlo of 120 event experiments:

\[\mu = 0.32 \]
\[\sigma = 0.03 \]

\[P(\text{Err} > \text{Err}_{\text{meas}}) = 5\% \]

CP asymmetry of channels that should have none

<table>
<thead>
<tr>
<th>Sample</th>
<th>Apparent CP asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadronic charged</td>
<td>0.03 ± 0.07</td>
</tr>
<tr>
<td>hadronic neutral</td>
<td>-0.01 ± 0.08</td>
</tr>
<tr>
<td>(J/\psi K^+)</td>
<td>0.13 ± 0.14</td>
</tr>
<tr>
<td>(J/\psi K^{*0} (K^{*0} \rightarrow K^+\pi))</td>
<td>0.49 ± 0.26</td>
</tr>
</tbody>
</table>
Fit including direct CP violation

\[A_{CP} = \frac{2D \sin 2\beta \sin \Delta m_d \Delta t + (1 - |\lambda_{CP}|^2) \cos \Delta m_d \Delta t}{(1 + |\lambda_{CP}|^2)} \]

\[\frac{2}{1 + |\lambda_{CP}|^2} \sin 2\beta = 0.12 \pm 0.37 \quad \frac{1 - |\lambda_{CP}|^2}{1 + |\lambda_{CP}|^2} = 0.26 \pm 0.19 \]
Systematic uncertainties

Compute fractional systematic errors using the measured value of the asymmetry increased by 1σ. Different contributions are added in quadrature.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty on $\sin 2\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{B^0}</td>
<td>0.012</td>
</tr>
<tr>
<td>Δm_d</td>
<td>0.015</td>
</tr>
<tr>
<td>Δz resolution for CP sample</td>
<td>0.019</td>
</tr>
<tr>
<td>Time resolution bias for CP sample</td>
<td>0.047</td>
</tr>
<tr>
<td>Measurement of mistag fraction</td>
<td>0.059</td>
</tr>
<tr>
<td>Different mistag fraction for CP and non CP samples</td>
<td>0.050</td>
</tr>
<tr>
<td>Different mistag fractions for B^0 and \bar{B}^0</td>
<td>0.005</td>
</tr>
<tr>
<td>Background in CP sample</td>
<td>0.015</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.091</td>
</tr>
</tbody>
</table>
Constraints on the Unitarity Triangle

The set of ellipses represents the allowed range of \((\bar{\rho}, \bar{\eta})\) based on our knowledge of the magnitudes of CKM matrix elements, for a set of typical values of model-dependent theoretical parameters:

Experimental inputs

<table>
<thead>
<tr>
<th>measurement</th>
<th>central value</th>
<th>exp. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>V_{cd}</td>
<td>)</td>
</tr>
<tr>
<td>(</td>
<td>V_{ub}</td>
<td>)</td>
</tr>
<tr>
<td>(\Delta m_{bd} \ (ps)^{-1})</td>
<td>.472</td>
<td>.017</td>
</tr>
<tr>
<td>(\Delta m_{bs}) from (\mathcal{A}) (Moriond 2000)</td>
<td>(\sigma_{\mathcal{A}})</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>\epsilon_K</td>
<td>\ (10^{-3}))</td>
</tr>
</tbody>
</table>

Theoretical inputs

<table>
<thead>
<tr>
<th>Theoretical est.</th>
<th>lower bound</th>
<th>higher bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\Lambda_{\text{QCD}}}{\Lambda})</td>
<td>0.070</td>
<td>0.300</td>
</tr>
<tr>
<td>(f_{B_d}/B_{B_d})</td>
<td>0.185</td>
<td>0.255</td>
</tr>
<tr>
<td>(\epsilon^\prime_\mu)</td>
<td>1.14</td>
<td>1.46</td>
</tr>
<tr>
<td>(B_K)</td>
<td>0.72</td>
<td>0.98</td>
</tr>
</tbody>
</table>

\(\sin 2\beta = 0.12 \pm 0.37 \pm 0.09\) is NOT included in the fits
Summary and Conclusions

- We have reconstructed and tagged 120 B^0 decays to CP eigenstates from 10 fb$^{-1}$ of data (~9 fb$^{-1}$ on-peak and ~1 fb$^{-1}$ off-peak):

 $\sin^2 \beta = 0.12 \pm 0.37 \text{ (stat)} \pm 0.09 \text{ (syst)}$

- The current PEP-II run will continue until the end of October producing ~25 fb$^{-1}$ in total.

- The next value of $\sin 2\beta$ will be even more interesting!

- We expect $\sigma(\sin 2\beta) \sim 0.2$ by the winter conferences.
Current $\sin^2 \beta$ World Values

- **BaBar** (
 \[0.45^{+0.43 + 0.07}_{-0.44 - 0.09}\])
- **Belle** (*PRELIMINARY*),
 \[0.86^{+0.83}_{-1.05} \pm 0.20\]
- **CDF**, \[0.79 \pm 0.39 \pm 0.1\]
- **ALEPH** (*PRELIMINARY*),
 \[0.12^{+0.37 + 0.0}_{-0.0}\]
- **OPAL**, \[3.20^{+1.8}_{-2.0} \pm 0.5\]