First
Physics Results from
Babar

David Hitlin
Caltech
for the BABAR Collaboration

XXXth International Conference on High Energy Physics
Osaka
July 31, 2000
The **BABAR** Collaboration

USA [35/276]
- California Institute of Technology
- UC, Irvine
- UC, Los Angeles
- UC, San Diego
- UC, Santa Barbara
- UC, Santa Cruz
- U of Cincinnati
- U of Colorado
- Colorado State
- Florida A&M
- U of Iowa
- Iowa State U
- LBNL
- LLNL
- U of Louisville
- U of Maryland
- U of Massachusetts, Amherst
- MIT
- U of Mississippi
- Mount Holyoke College
- Northern Kentucky U
- U of Notre Dame
- ORNL/Y-12
- U of Oregon
- U of Pennsylvania
- Prairie View A&M
- Princeton
- SLAC
- U of South Carolina
- Stanford U
- U of Tennessee
- U of Texas at Dallas
- Vanderbilt
- U of Wisconsin
- Yale

Canada [4/16]
- U of British Columbia
- McGill U
- U de Montréal
- U of Victoria

France [5/50]
- LAPP, Annecy
- LAL Orsay
- LPNHE des Universités Paris 6/7
- Ecole Polytechnique
- CEA, DAPNIA, CE-Saclay

Germany [3/21]
- U Rostock
- Ruhr U Bochum
- Technische U Dresden

Italy [12/89]
- INFN, Bari
- INFN, Ferrara
- Lab. Nazionali di Frascati dell’ INFN
- INFN, Genova
- INFN, Milano
- INFN, Napoli
- INFN, Padova
- INFN, Pavia
- INF, Pisa
- INFN, Roma and U "La Sapienza"
- INFN, Torino
- INFN, Trieste

Norway [1/3]
- U of Bergen

Russia [1/13]
- Budker Institute, Novosibirsk

United Kingdom [10/80]
- U of Birmingham
- U of Bristol
- Brunel University
- U of Edinburgh
- U of Liverpool
- Imperial College
- Queen Mary & Westfield College
- Royal Holloway, University of London
- U of Manchester
- Rutherford Appleton Laboratory

9 Countries
72 Institutions
554 Physicists
Outline of the talk

- PEP-II and BABAR
- Selected measurements
 - B lifetimes
 - B mixing
 - $J/\psi K^*$ polarization
 - $\pi\pi, K\pi, KK$ branching ratios
- Measurement of CP-violating asymmetries in B decays to CP eigenstates
 - Isolating and tagging the CP sample
 - Determining the Δz resolution
 - Determining the mistag fractions
 - Determining the CP-violating asymmetries
- Conclusion
With the goal of measuring CP-violating asymmetries in B^0 meson decay, construction of the PEP-II asymmetric storage ring and the associated $BABAR$ detector were started in 1993 and 1994, respectively.

- PEP-II had first collisions in the Summer of 1998
- $BABAR$ was rolled onto the beamline in Spring 1999 and saw its first events on May 26, 1999
- PEP-II peak luminosity is 2.28×10^{33} [3 x 10^{33} is design] using 606 bunches [1658 is design], with 1286 ma e^+ and 751 ma e^-

- PEP-II efficiency has been higher than expected and $BABAR$ efficiency has typically been $> 95\%$; the integrated “design day” luminosity of 135 pb$^{-1}$ (delivered) has been exceeded

- PEP-II has delivered 16 fb$^{-1}$ as of July 28
 - $BABAR$ has recorded 14.8 fb$^{-1}$
 - The results presented today are based on \sim10 fb$^{-1}$
 - Much of the early data requires reprocessing to improve calibration and alignment
PEP-II delivered/BABAR recorded luminosity 1999+2000

PEP-II delivered: 16.0 fb^{-1}
BABAR logged: 14.8 fb^{-1}

BABAR daily recorded luminosity

design day
BABAR talks at ICHEP2000

- **Parallel Sessions**
 - Study of inclusive and exclusive \(B \) decays to charmonium final states with **BABAR**.
 Gerhard Raven, UCSD
 - **BABAR** results on \(B \) decays to \(D^* \) and \(D_s \)\((^*)\).
 Gloria Vuagnin, Universita' di Trieste
 - Study of \(B \) lifetime and mixing with fully-reconstructed \(B^0 \) decays with **BABAR**.
 Fernando Martinez-Vidal, Univ. Paris VI et VII
 - **BABAR** results on \(B \) lifetime and mixing with partially-reconstructed \(B^0 \) decays.
 Christophe Yeche, Saclay
 - **BABAR** study of the decays \(B \rightarrow K^*\gamma \), \(B \rightarrow Kl^+l^-\) and \(B \rightarrow K^*l^+l^-\).
 Colin Jessop, SLAC
 - Study of charmless two-body, three-body and quasi-two-body \(B \) decays with **BABAR**.
 Theresa Champion, Univ. of Birmingham
 - **DIRC - The particle identification system for BABAR**.
 J. Schwiening, SLAC

- **Plenary Session**
 - First Physics Results from **BABAR**
 David Hitlin, Caltech
Dilepton Mixing: Results

7.7 fb\(^{-1}\) on-resonance
1.1 fb\(^{-1}\) off-resonance

\[m_d = (0.507 \pm 0.015(\text{stat}) \pm 0.022(\text{syst})) \text{ h ps}^{-1} \]

[PDG: \(Dm_d = (0.472 \pm 0.017) \text{ h ps}^{-1}\)]

Dilepton sub-sample enriched in \(B^0\) with partial reconstruction of \(B^0 \cdot D^*l\)
Global likelihood fit using m_{ES}, E, Fisher discriminant, and Cherenkov angle measured in DIRC

<table>
<thead>
<tr>
<th>Mode</th>
<th>N_s</th>
<th>Stat. Sig. (σ)</th>
<th>B (10^{-6})</th>
<th>CLEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\pi^-$</td>
<td>29^{+8+3}_{-7-4}</td>
<td>5.7</td>
<td>$9.3^{+2.6+1.2}_{-2.3-1.4}$</td>
<td>$4.3^{+1.6}_{-1.4} \pm 0.5$</td>
</tr>
<tr>
<td>$K^+\pi^-$</td>
<td>38^{+9+3}_{-8-5}</td>
<td>6.7</td>
<td>$12.5^{+3.0+1.3}_{-2.6-1.7}$</td>
<td>$17.2^{+2.5}_{-2.4} \pm 1.2$</td>
</tr>
<tr>
<td>K^+K^-</td>
<td>7^{+5}_{-4} (<15)</td>
<td>2.1</td>
<td><6.6</td>
<td><1.9</td>
</tr>
</tbody>
</table>
Amplitude Analysis of $B \ J/\psi K^*$

| $|A|^2$ | $0.13 \pm 0.06 \pm 0.02$ |
|----------|--------------------------|
| $|A_0|^2$ | $0.60 \pm 0.06 \pm 0.04$ |
| $f_{||}$ | $2.58 \pm 0.39 \pm 0.20$ |
| f | $0.01 \pm 0.27 \pm 0.10$ |

Will be used for future $\sin(2\beta)$ measurement.
The Wolfenstien parametrization of the CKM matrix

\[\begin{align*}
\ell & \quad 1 - \frac{\rho^2}{2} & \quad 1 - \frac{\rho^2}{2} & \quad A_1^3 (r - i \eta) \\
\eta & \quad -1 & \quad 1 - \frac{\rho^2}{2} & \quad A_1^2 \\
\gamma & \quad A_1^3 (1 - r - i \eta) & \quad -A_1^2 & \quad 1 \\
\beta & \quad \gamma & \quad \beta & \quad \beta \\
\alpha & \quad \alpha & \quad \alpha & \quad \alpha \\
\end{align*} \]

1 and A are well-determined; \(\rho \) and \(\eta \) are not

The unitarity of the CKM matrix provides six constraints, the most useful of which

\[V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 \]

is called the unitarity triangle:

The area of the unitarity triangle, the “Jarlskog Invariant”, is proportional to the strength of \(CP \) violation in the Standard Model:
The sides of the unitarity triangle are determined by the magnitudes of the CKM matrix elements.

Uncertainties in theoretical models for V_{ub}, f_B, B_K, etc limit the determination of the triangle.

The CP asymmetry in B^0 decays to CP eigenstates measures

$$\sin 2\beta = -\arg\left[\frac{V_{ut}V_{ut}^*}{V_{ut}V_{tt}^*}\right]$$

allowing us to overdetermine the Unitarity Triangle.
Measuring CP violation at the $\Upsilon(4S)$

The $\Upsilon(4S)$ resonance decays to $B\bar{B}$ pairs in a coherent $L=1$ state.

At PEP-II, with e^{-} energy of 9 GeV and e^{+} energy of 3.1 GeV, the $\Upsilon(4S)$ is produced with $\beta\gamma=0.56$.

The mean decay distance Δz between the B decay vertices is ~250 μm, making it possible to ascertain the time order of the decays.

If we can measure the flavor of a $B^0(\bar{B}^0)$ decay (B_{tag}) occurring at a time t, then at that time, the flavor of the other $\bar{B}^0(B^0)$ is known.

We then reconstruct the decay of the second B^0 at a time $\Delta t=t-t_0$ into a CP eigenstate:

$$f_{\pm}(\Delta t; \Gamma, \Delta m_d, D \sin 2\beta) = \frac{1}{4} \Gamma e^{-\Gamma |\Delta t|} \left[1 \pm D \sin 2\beta \times \sin \Delta m_d \Delta t \right]$$

where the dilution $D = (1 - 2w)$ is derived from the measured mistag fraction w.
There are four time distributions

\[f_+ : \quad B_{\text{tag}} = B, \quad \Delta t > 0 \]
\[B_{\text{tag}} = B, \quad \Delta t < 0 \]
\[f_- : \quad B_{\text{tag}} = \bar{B}, \quad \Delta t > 0 \]
\[B_{\text{tag}} = \bar{B}, \quad \Delta t < 0 \]

The CP asymmetry is

\[\mathcal{A}_{CP} = \frac{f_+ (\Delta t) - f_- (\Delta t)}{f_+ (\Delta t) + f_- (\Delta t)} = \mathcal{D} \sin 2\beta \times \sin \Delta m_s \Delta t \]
Overview of the analysis

Reconstruct the B decays to CP eigenstates and tag the flavor of the other B decay

Select B_{tag} events using, primarily, leptons and K's from B hadronic decays & determine B flavor

Select B_{CP} events ($B^{0} \rightarrow J/\psi K_{S}^{0}$, etc.)

Measure the mistag fractions w_i and determine the dilutions $D_i = 1 - 2w_i$

Measure Δz between B_{CP} and B_{tag} to determine the signed time difference Δt between the decays

Determine the resolution function for Δz

$$\mathcal{R}(\Delta t; \hat{\Delta}) = \sum_{i=1}^{i=2} \frac{f_i}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\Delta t - \delta_i)^2}{2\sigma_i^2}\right)$$

$$\mathcal{F}_{\pm}(\Delta t; \Gamma_i, \Delta m_d, D \sin 2\beta, \hat{\Delta}) = f_{\pm}(\Delta t; \Gamma_i, \Delta m_d, D \sin 2\beta) \otimes \mathcal{R}(\Delta t; \hat{\Delta})$$

$$\mathcal{A}_{CP}(\Delta t) \propto \frac{\mathcal{F}_{+}(\Delta t) - \mathcal{F}_{-}(\Delta t)}{\mathcal{F}_{+}(\Delta t) + \mathcal{F}_{-}(\Delta t)} \propto D \sin 2\beta \times \sin \Delta m_d \Delta t$$
A tagged $B^0 \, J/\psi K^0_S$ event
The B_{CP} sample

\[J/\psi K_s^0 (K_s^0 \rightarrow \pi^+\pi^-) \]
124±12 events
purity 96%

\[J/\psi K_s^0 (K_s^0 \rightarrow \pi^0\pi^0) \]
18±4 events
purity 91%

\[\psi (2S) K_s^0 \]
27±6 events
purity 93%
The resolution function for Δt

The time resolution is dominated by the z resolution of the tagging vertex.

The vertex resolution function is well-described by a five-parameter sum of two gaussians:

$$ R(\Delta t; \delta_i) = \sum_{i=1}^{2} \frac{f_i}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\Delta t - \delta_i)^2}{2\sigma_i^2}\right) $$

In the likelihood fits, we use event-by-event time resolution errors. We introduce two scale factors S_1 and S_2:

$$ \sigma_i = S_i \times \sigma_{\Delta t} $$

To account for $\sim 1\%$ of events with very large Δz a third gaussian with a fixed width of 8ps, is included.

The parameters extracted from the fit are:

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_1 (ps)</td>
<td>-0.20 - 0.06 from fit</td>
</tr>
<tr>
<td>δ_2 (ps)</td>
<td>0 fixed</td>
</tr>
<tr>
<td>f_1 (%)</td>
<td>1.66 - 0.6 from fit</td>
</tr>
<tr>
<td>f_2 (%)</td>
<td>75 fixed</td>
</tr>
<tr>
<td>f_3 (%)</td>
<td>1.33 - 0.14 from fit</td>
</tr>
<tr>
<td>S_1</td>
<td>2.1 fixed</td>
</tr>
<tr>
<td>S_2</td>
<td>0 fixed</td>
</tr>
</tbody>
</table>
Particle ID and mis-ID

- **Electrons**
 - Efficiency vs. p_{lab} [GeV/c]
 - $20^\circ < \theta < 140^\circ$
 - Electrons from bremsstrahlung, $\gamma \gamma \rightarrow e^+e^-$
 - Pions from K^\pm

- **Muons**
 - Efficiency vs. p_{lab} [GeV/c]
 - $0.5 \text{ GeV/c} < p_{lab} < 4.5 \text{ GeV/c}$
 - Electrons from bremsstrahlung, $\gamma \gamma \rightarrow e^+e^-$
 - Pions from K^\pm

- **Kaons**
 - Efficiency vs. p_{lab} [GeV/c]
 - Polar angle [deg]
 - Efficiency and misidentification for $17^\circ < \theta < 155^\circ$

David Hitlin ICHEP2000 July 31, 2000

BaBar Babar™ and © L. de Brunhoff
Measurement of mistag fractions & Δm_d

- Mistag fractions and Δm_d are directly measured

 - We use a large sample of events in which one B^0 candidate, called B_{rec}, is fully reconstructed in a flavor eigenstate mode

 - Hadronicsample: 2227 events
 - $D^-, \pi^+, D^-, \rho^+, D^-, a_1^+, D^-, \pi^+, D^- \rho^+, D^- a_1^+$
 - Semileptonic events: 7517 events $D^-, \ell^+ \nu_{\ell}$

 - We apply flavor-tagging algorithms to the rest of the event, which constitutes the potential B_{tag}

- Tagging categories:

 - Electron
 - Muon
 - Kaon
 - NT1
 - NT2

- We classify tagged events as mixed or unmixed, depending on whether the B_{tag} is tagged with the same or the opposite flavor as the B_{rec}

- The time-dependent rate of mixing, which best exploits information at small values of $\Delta t = t_{\text{rec}} - t_{\text{tag}}$, is used to extract w_i and Δm_d

- The time-integrated rate of mixed events in each tagging category:

 $\chi_i = \chi_d + (1 - 2\chi_d)w_i$

 where

 $\chi_d = \frac{x_d^2}{2(1 + x_d^2)}$, \quad $x_d = \frac{\Delta m_d}{\Gamma}$

is used as a cross check
Measurement of mistag fractions & Δm_d

Hadronic sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Final State</th>
<th>Yield</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadronic (neutral)</td>
<td>$D^*\pi^+$</td>
<td>622 ± 27</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>$D^*\rho^+$</td>
<td>419 ± 25</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>$D^*a_1^+$</td>
<td>239 ± 19</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>$D^-\pi^+$</td>
<td>630 ± 26</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>$D^-\rho^+$</td>
<td>315 ± 20</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>$D^{*-}\pi^+$</td>
<td>225 ± 20</td>
<td>74</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>2438 ± 57</td>
<td>85</td>
</tr>
<tr>
<td>Hadronic (charged)</td>
<td>$\bar{D}^0\pi^+$</td>
<td>1755 ± 47</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>$\bar{D}^*\pi^+$</td>
<td>543 ± 27</td>
<td>89</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>2293 ± 54</td>
<td>88</td>
</tr>
</tbody>
</table>
Measurement of mistag fractions & Δm_d

Semileptonic sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Final State</th>
<th>Yield</th>
<th>Purity(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semileptonic</td>
<td>$D^*l\nu$</td>
<td>7517 ± 104</td>
<td>84</td>
</tr>
</tbody>
</table>

[Graphs showing distributions for leptons, kaons, NT1, and NT2 tags]
Measurement of Δm_d

Signal region, all tags

Sideband region, all tags
The time-dependence of mixed and unmixed events is

\[h_\pm (\Delta t; \Gamma, \Delta m_d, \mathcal{D}) = \frac{1}{4} \Gamma e^{-r|\Delta t|} [1 \pm \mathcal{D} \times \cos \Delta m_d \Delta t] \]

This is convoluted with the \(\Delta z \) vertex resolution function

\[\mathcal{H}_\pm (\Delta t; \Gamma, \Delta m_d, \mathcal{D}, \delta) = h_\pm (\Delta t; \Gamma, \Delta m_d, \mathcal{D}) \otimes R(\Delta t; \delta) \]

and used to form a likelihood function

\[\ln L_M = \sum_i \left[\sum_{\text{unmixed}} \ln \mathcal{H}_+ (t; \Gamma, \Delta m_d, \mathcal{D}_i, \delta) \right] \]

\[\sum_{\text{mixed}} \ln \mathcal{H}_- (t; \Gamma, \Delta m_d, \mathcal{D}_i, \delta) \]

from which we extract \(w_i = (1 - D_i)/2 \) and \(\Delta m_d \)

The period of the mixing rate \(a(\Delta t) = \frac{N_{\text{unmix}}(\Delta t) - N_{\text{mix}}(\Delta t)}{N_{\text{unmix}}(\Delta t) + N_{\text{mix}}(\Delta t)} \)

yields \(\Delta m_d \)

The amplitude yields \(w_i \) for each tagging mode
Results of the tag/mix likelihood fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>hadronic Fit Value</th>
<th>$Q = c(1-2w)^2$</th>
<th>semileptonic Fit Value</th>
<th>$Q = c(1-2w)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm_d [ps^{-1}]</td>
<td>0.516 ± 0.031</td>
<td>—</td>
<td>0.508 ± 0.020</td>
<td>—</td>
</tr>
<tr>
<td>$w(\text{Lepton})$</td>
<td>0.116 ± 0.032</td>
<td>0.062</td>
<td>0.084 ± 0.020</td>
<td>0.071</td>
</tr>
<tr>
<td>$w(\text{Kaon})$</td>
<td>0.196 ± 0.021</td>
<td>0.136</td>
<td>0.199 ± 0.016</td>
<td>0.133</td>
</tr>
<tr>
<td>$w(\text{NT1})$</td>
<td>0.135 ± 0.035</td>
<td>0.064</td>
<td>0.210 ± 0.028</td>
<td>0.066</td>
</tr>
<tr>
<td>$w(\text{NT2})$</td>
<td>0.314 ± 0.037</td>
<td>0.023</td>
<td>0.361 ± 0.025</td>
<td>0.013</td>
</tr>
<tr>
<td>scale core, sig</td>
<td>1.33 ± 0.13</td>
<td>—</td>
<td>1.32 ± 0.07</td>
<td>—</td>
</tr>
<tr>
<td>$\delta_{\text{core, sig [ps]}}$</td>
<td>-0.20 ± 0.07</td>
<td>—</td>
<td>-0.25 ± 0.04</td>
<td>—</td>
</tr>
<tr>
<td>f_{ell}</td>
<td>0.016 ± 0.006</td>
<td>—</td>
<td>0.000 ± 0.002</td>
<td>—</td>
</tr>
</tbody>
</table>

$\sum_i Q_i = 0.285$ \hspace{1cm} $\sum_i Q_i = 0.283$
Tagged events and mistag fractions \(w_i \)

Mistag fractions (likelihood method) from the hadronic sample

<table>
<thead>
<tr>
<th>Tagging Category</th>
<th>(\varepsilon) (%)</th>
<th>(w) (%)</th>
<th>(Q) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton</td>
<td>11.2 ± 0.5</td>
<td>9.6 ± 1.7 ± 1.3</td>
<td>7.3 ± 0.3</td>
</tr>
<tr>
<td>Kaon</td>
<td>36.7 ± 0.9</td>
<td>19.7 ± 1.3 ± 1.1</td>
<td>13.5 ± 0.3</td>
</tr>
<tr>
<td>NT1</td>
<td>11.7 ± 0.5</td>
<td>16.7 ± 2.2 ± 2.0</td>
<td>5.2 ± 0.2</td>
</tr>
<tr>
<td>NT2</td>
<td>16.6 ± 0.6</td>
<td>33.1 ± 2.1 ± 2.1</td>
<td>1.9 ± 0.1</td>
</tr>
<tr>
<td>all</td>
<td>76.7 ± 0.5</td>
<td></td>
<td>27.9 ± 0.5</td>
</tr>
</tbody>
</table>

The effective tagging efficiency is

\[
Q_i = \varepsilon_i (1 - 2 w_i)^2
\]

Tagged events by decay mode and tagging category

<table>
<thead>
<tr>
<th>Tagging Category</th>
<th>(J/\psi K_S^0)</th>
<th>(\psi(2S)K_S^0)</th>
<th>CP sample (tagged)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K_S^0 \rightarrow \pi^+\pi^-)</td>
<td>(K_S^0 \rightarrow \pi^0\pi^0)</td>
<td>(K_S^0 \rightarrow \pi^+\pi^-)</td>
</tr>
<tr>
<td>Electron</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Muon</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaon</td>
<td>29</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>NT1</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NT2</td>
<td>10</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>35</td>
<td>85</td>
</tr>
</tbody>
</table>
Δm_d from the tag/mix likelihood fit

Hadronic decays

\[m_d = 0.516 \pm 0.031 \text{ (stat)} \pm 0.018 \text{ (syst) } \text{ps}^{-1} \]

Semileptonic decays

\[m_d = 0.508 \pm 0.020 \text{ (stat)} \pm 0.022 \text{ (syst) } \text{ps}^{-1} \]

Combined result

\[m_d = 0.512 \pm 0.017 \text{ (stat)} \pm 0.022 \text{ (syst) } \text{ps}^{-1} \]

[PDG: \[m_d = 0.472 \pm 0.017 \text{ ps}^{-1} \]]
Systematic uncertainties in Δm_d & w_i

Hadronic decays

<table>
<thead>
<tr>
<th>Source</th>
<th>Δm_d [fs$^{-1}$]</th>
<th>Lepton</th>
<th>Kaon</th>
<th>NT1</th>
<th>NT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt Resolution</td>
<td>0.011</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Background Δt</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Background Resolution</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Background Fractions</td>
<td>0.004</td>
<td>0.004</td>
<td>0.002</td>
<td>0.006</td>
<td>0.004</td>
</tr>
<tr>
<td>B^0 lifetime</td>
<td>0.005</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>z scale</td>
<td>0.005</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z boost</td>
<td>0.003</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Monte Carlo Correction</td>
<td>$+0.013$</td>
<td>-0.001</td>
<td>0.000</td>
<td>-0.010</td>
<td>-0.015</td>
</tr>
<tr>
<td>Total Systematic Error</td>
<td>0.018</td>
<td>0.013</td>
<td>0.010</td>
<td>0.017</td>
<td>0.015</td>
</tr>
<tr>
<td>Statistical Error</td>
<td>0.031</td>
<td>0.032</td>
<td>0.021</td>
<td>0.035</td>
<td>0.037</td>
</tr>
<tr>
<td>Total Error</td>
<td>0.036</td>
<td>0.035</td>
<td>0.023</td>
<td>0.039</td>
<td>0.040</td>
</tr>
</tbody>
</table>

$D^{*}l\nu$ decays

<table>
<thead>
<tr>
<th>Source</th>
<th>Δm_d [fs$^{-1}$]</th>
<th>Lepton</th>
<th>Kaon</th>
<th>NT1</th>
<th>NT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt Resolution</td>
<td>0.012</td>
<td>0.005</td>
<td>0.009</td>
<td>0.012</td>
<td>0.005</td>
</tr>
<tr>
<td>Background Δt</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Background Resolution</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Background Dilutions</td>
<td>0.006</td>
<td>0.008</td>
<td>0.013</td>
<td>0.026</td>
<td>0.031</td>
</tr>
<tr>
<td>Background Fractions</td>
<td>0.006</td>
<td>0.009</td>
<td>0.011</td>
<td>0.017</td>
<td>0.032</td>
</tr>
<tr>
<td>B^+ Backgrounds</td>
<td>0.010</td>
<td>0.009</td>
<td>0.010</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>B^0 lifetime</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>z scale</td>
<td>0.005</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z boost</td>
<td>0.003</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Monte Carlo Correction</td>
<td>$+0.008$</td>
<td>-0.010</td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.006</td>
</tr>
<tr>
<td>Total Systematic Error</td>
<td>0.022</td>
<td>0.018</td>
<td>0.023</td>
<td>0.035</td>
<td>0.046</td>
</tr>
<tr>
<td>Statistical Error</td>
<td>0.020</td>
<td>0.020</td>
<td>0.016</td>
<td>0.028</td>
<td>0.025</td>
</tr>
<tr>
<td>Total Error</td>
<td>0.030</td>
<td>0.027</td>
<td>0.031</td>
<td>0.045</td>
<td>0.052</td>
</tr>
</tbody>
</table>
B^0 and B^\pm lifetimes using fully reconstructed hadronic decays

Uses the same vertex fitting technique as the CP analysis

- B^0: 2210 ± 58 events
- B^\pm: 2261 ± 53 events

$B^0 = 1.506 \pm 0.052$ (stat) ± 0.029 (syst) ps

$B^+ = 1.602 \pm 0.049$ (stat) ± 0.035 (syst) ps

$B^+/B^0 = 1.065 \pm 0.044$ (stat) ± 0.021 (syst) ps

(PDG: 1.548 ± 0.032)

(PDG: 1.653 ± 0.028)

(PDG: 1.062 ± 0.029)
The sin2\(\beta\) analysis was done blind to eliminate experimenters’ bias
- The amplitude in the asymmetry \(A_{CP}(\Delta t)\) was hidden by arbitrarily flipping its sign and by adding an arbitrary offset
- The \(CP\) asymmetry in the \(\Delta t\) distribution was hidden by multiplying \(\Delta t\) by the sign of the tag and by adding an arbitrary offset
- The blinded approach allows systematic studies of tagging, vertex resolution and their correlations to be done while keeping the value of sin2\(\beta\) hidden
- The result was unblinded two weeks ago
Extracting $\sin 2\beta$

- The Δt distribution of the tagged CP eigenstate decays, which is analyzed using maximum likelihood to extract the asymmetry $A_{CP}(\Delta t)$

B^0 and \bar{B}^0 tags

![Graph showing B^0 and \bar{B}^0 tags]
Extracting $\sin 2\beta$

Results of the likelihood fit to the full sample and various subsamples

$$\sin 2\beta = 0.12 \pm 0.37 \text{ (stat)} \pm 0.09 \text{ (syst)}$$
sin2β in different tagging categories
Extracting $\sin 2\beta$

$\sin 2\beta = 0.12 \pm 0.37$ (stat) ± 0.09 (syst)

χ^2 for the binned asymmetry and the likelihood fit is 9.2 for 7 df
Statistical error

- The probability of obtaining a 1σ statistical error of 0.37 with a sample of 120 tagged CP eigenstate decays has been estimated by generating a large number of toy Monte Carlo experiments with a sample of this size.
 - The errors are distributed around 0.32, with a standard deviation of 0.03.
 - The probability of obtaining a statistical error larger than the one we observe is 5%.

- Using a set of full Monte Carlo simulated experiments with the same number of events we observe, we estimate that the probability of finding a lower value of the likelihood than our observed value is 20%.

Checks

CP asymmetry of channels that should have none.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Apparent CP asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadronic charged</td>
<td>0.03 ± 0.07</td>
</tr>
<tr>
<td>hadronic neutral</td>
<td>-0.01 ± 0.08</td>
</tr>
<tr>
<td>$J/\psi \ K^+$</td>
<td>0.13 ± 0.14</td>
</tr>
<tr>
<td>$J/\psi \ K^{*0}$ ($K^{*0} \rightarrow K^+\pi^-)$</td>
<td>0.49 ± 0.26</td>
</tr>
</tbody>
</table>
Fit including direct CP violation

\[A_{CP} = \frac{D \sin 2\beta \sin \Delta m_d \Delta t + (1 - |\lambda_{CP}|^2) \cos \Delta m_d \Delta t}{1 + |\lambda_{CP}|^2} \]

\[\sin 2\beta = 0.12 \pm 0.37 \quad \frac{1 - |\lambda_{CP}|^2}{1 + |\lambda_{CP}|^2} = 0.26 \pm 0.19 \]
Systematic uncertainties

Compute fractional systematic errors using the measured value of the asymmetry increased by 1\(\sigma\). Different contributions are added in quadrature.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty on sin(2\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{B^0})</td>
<td>0.012</td>
</tr>
<tr>
<td>(\Delta m_d)</td>
<td>0.015</td>
</tr>
<tr>
<td>(\Delta z) resolution for CP sample</td>
<td>0.019</td>
</tr>
<tr>
<td>Time resolution bias for CP sample</td>
<td>0.047</td>
</tr>
<tr>
<td>Measurement of mistag fraction</td>
<td>0.059</td>
</tr>
<tr>
<td>Different mistag fraction for CP and non CP samples</td>
<td>0.050</td>
</tr>
<tr>
<td>Different mistag fractions for (B^0) and (\bar{B}^0)</td>
<td>0.005</td>
</tr>
<tr>
<td>Background in CP sample</td>
<td>0.015</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.091</td>
</tr>
</tbody>
</table>
Constraints on the Unitarity Triangle

The set of ellipses represents the allowed range of \((\bar{\rho}, \bar{\eta})\) based on our knowledge of the magnitudes of CKM matrix elements, for a set of typical values of model-dependent theoretical parameters:

Experimental inputs

<table>
<thead>
<tr>
<th>measurement</th>
<th>central value</th>
<th>exp. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>V_{cb}</td>
<td>)</td>
</tr>
<tr>
<td>(</td>
<td>V_{ub}</td>
<td>)</td>
</tr>
<tr>
<td>(\Delta m_{B_s} (ps)^{-1})</td>
<td>.472</td>
<td>.017</td>
</tr>
<tr>
<td>(\Delta m_{B_d}) from A (Moriond 2000)</td>
<td>2.271</td>
<td>.017</td>
</tr>
<tr>
<td>(</td>
<td>\varepsilon_K</td>
<td>(10^{-3}))</td>
</tr>
</tbody>
</table>

Theoretical inputs

<table>
<thead>
<tr>
<th>Theoretical est.</th>
<th>lower bound</th>
<th>higher bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<\frac{\varepsilon_K}{\lambda})</td>
<td>0.070</td>
<td>0.100</td>
</tr>
<tr>
<td>(f_{B_s}\sqrt{B_{B_s}})</td>
<td>0.185</td>
<td>0.255</td>
</tr>
<tr>
<td>(\xi_1^2)</td>
<td>1.14</td>
<td>1.46</td>
</tr>
<tr>
<td>(B_K)</td>
<td>0.72</td>
<td>0.98</td>
</tr>
</tbody>
</table>

\(\sin 2\beta = 0.12 \pm 0.37 \pm 0.09\) is NOT included in the fits.
PEP-II and B_{ABAR} have had an exciting and productive first year, producing more than 15 fb$^{-1}$ in the $\Upsilon(4S)$ region and recording more than 14 fb$^{-1}$ In 9 fb$^{-1}$ we have reconstructed and tagged 120 decays of B^0 to CP eigenstates

\[
\sin 2\beta = 0.12 \pm 0.37 \text{(stat)} \pm 0.09 \text{(syst)}
\]

\[
\Delta m_d = 0.507 \pm 0.015 \pm 0.022 \quad \text{di-lepton}
\]

\[
\Delta m_d = 0.516 \pm 0.031 \pm 0.018 \quad \text{hadronic}
\]

\[
\Delta m_d = 0.508 \pm 0.020 \pm 0.022 \quad \text{semileptonic}
\]

With 8 fb$^{-1}$ analyzed at the $\Upsilon(4S)$

\[
B^0 = 1.506 \quad 0.052 \text{ (stat)} \quad 0.029 \text{ (syst) \, ps}
\]

\[
B^+ = 1.602 \quad 0.049 \text{ (stat)} \quad 0.035 \text{ (syst) \, ps}
\]

\[
\frac{B^+}{B^0} = 1.065 \quad 0.044 \text{ (stat)} \quad 0.021 \text{ (syst)}
\]

Measurements of $B(K^\ast\gamma)$, $B(\pi\pi)$, $B(K\pi)$, $B(KK)$, …

A wide variety of other results have been presented in parallel sessions and contributed papers

The PEP-II run has been extended to the end of October, with the goal of integrating 25 fb$^{-1}$

This should allow for a measurement of \(\sin 2\beta\) with interesting precision