γ E Scale - Run 6 Results

Jörg Marks, University of Heidelberg

Outline

- Processing and selection of π^0 and $\mu\mu\gamma$ data
- γ energy scale, θ, E dependence in run 6
- EMC response in run 6, $\mu\mu\gamma$ and π^0 data
- Summary
Introduction

Data processing and selection – π^0

Goal: select symmetric π^0 candidates in data and MC.

- **Datasets:**
 - run 6 R22d-V01: runs 69604 – 74349 (21.1.07 – 2.7.07)
 - MC generic B (R22d), no selection corresponding to the run range in data!

- **Selection:**
 - BGF multihadron events with $R2 > 0.8$
 - γ cluster with LAT < 0.6 and $N_{digi} > 1$
 - no tracks within a distance of 30 cm on the EMC surface

- **Signal processing:**
 - subtract combinatorial background using γ cluster of different events
 - fit Novosibirsk func. around the peak of the distr. to extract $<m_{\gamma\gamma}>$

Data processing and selection – $\mu\mu\gamma$

- **Datasets for $\mu\mu\gamma$ calibration:**
 - run 6 R22d-V01: runs 69604 – 74349 (21.1.07 – 2.7.07) (46.6 fb$^{-1}$)
 - MC SP3981 (R22d), no selection corresponding to the run range in data!

- **Use exactly the same selection as for the previous $\mu\mu\gamma$ calibration.**
γ Energy Scale Parametrizations

θ dependence of the γ energy scale in μμγ data

Jörg Marks
EMC Meeting
E dependence of the γ energy scale in $\mu\mu\gamma$ and π^0 data

\[\ln E_{\gamma} \]

- π^0 MC
- $\mu\mu\gamma$ MC

γ scale (MC)

γ scale (Data)

Run 5

π^0 data
$\mu\mu\gamma$ data

Jörg Marks EMC Meeting 4
E dependence of the γ energy scale in $\mu\mu\gamma$ and π^0 data

E dependence of the γ energy scale in $\mu\mu\gamma$ and π^0 data

π^0 MC
$\mu\mu\gamma$ MC

π^0 data
$\mu\mu\gamma$ data
E dependence of the γ energy scale in $\mu\mu\gamma$ and π^0 data

- Run 6
- Run 5

γ scale

$\ln(E)$

Jörg Marks EMC Meeting
EMC Response in Data and MC
EMC response to π^0 data

Apply the parametrizations to π^0's and measure data/mc before and after calibration.

Data/MC

$\ln E_\gamma / \text{GeV}$

EMC$_{\text{barrel}}$

\pm 1 %

Larger constants in θ at lower E_γ preferred

Jörg Marks

EMC Meeting
EMC response to π^0 data - Energy dependence

Apply the parametrizations to π^0's and measure the response before and after calibration.

EMC_{barrel}

$\ln E_{\gamma}/\text{GeV}$

$mc_{\gamma \gamma} [\text{MeV}]$

MC raw

Data raw

MC calibrated

Data calibrated

2 MeV

2 MeV

Jörg Marks

EMC Meeting
EMC response to π^0 data - θ dependence run 1 - 6

Apply the parametrizations to π^0's and measure the response before and after calibration.
EMC response to π^0 data - asymmetric case

Apply the parametrizations to asymmetric π^0's and measure data/mc after calibration.

Data/MC

$E_{MC_{\text{barrel}}}$

$\ln E_{\gamma}$ / GeV

θ

1 %
EMC response to π^0 data

- Good description of the data by MC after calibration.
- Strong θ dependence in the raw data of run 5 and 6.
- Even for run 1 the description of the data by MC is ok.
EMC response to \(\mu\mu\gamma \) data

Apply parametrizations to \(\mu\mu\gamma \) datasets and measure data / mc signal ratio.

Data/MC

\(\ln \left(E_\gamma / \text{GeV} \right) \)

\(I_\theta \)
Remarks on the run 7 γ energy scale calibration

In first order the overall scale is fixed by source / bhabha calibration and we can keep the dependencies as is from the previous run. But due to the large amount of hardware work we need to extract the run 6 calibration as soon as possible.

What do we need to derive a run 7 calibration?

- Determination of the angular dependence
 - $\mu\mu\gamma$ data from about 25 fb$^{-1}$ of data taking (similar amount as for run 1) and the corresponding MC data (SP3981)

- Determination of the energy dependence
 - $\mu\mu\gamma$ data and "BGF multihadron" data and MC datasets SP3981 and SP1237.

- Time for processing and analysis about 10 days.
Summary

- Parametrizations for run 6 in E, θ of the γ energy scale are derived in the energy range of 70 MeV – 6 GeV using π⁰ and μμγ data processed in R22d.
- The energy scales derived from the π⁰ and μμγ datasets agree within the errors.
- Comparing the response of the calorimeter to π⁰ and μμγ events in the different run periods shows a good description of the data by Monte Carlo.
- An amount of about 25 fb⁻¹ data and the corresponding MC datasets are needed to perform a full run 7 calibration.