Photon Energy Scale from π^0 Data

Jörg Marks, University of Heidelberg

Outline

- Introduction
- γ energy scale, E and θ dependence run I - run IV
- $m(\pi^0)$ measurement in the EMC
- Summary
- Conclusion
Introduction

There were extensive presentations at previous meetings where the concept of extracting the photon energy scale using π^0 data had been discussed. We understand in detail the role the different photon energy distributions in Data and MC on the π^0 signal and quantified the systematic effects.

- Show the final results on the E, θ dependence of the γ energy scale for run I - run IV.

- Compare the E, θ dependence of $\langle m (\pi^0) \rangle$ for data and MC and test the γ energy scale.

- Change in the splitting of EMC_{forward} and EMC_{barrel}. The binning in I_θ is now adapted to the EMC hardware.
\(\pi^0 \) Signal processing

Definition of the event samples

- Use CM2 (cache) data and generic B MC: Black Diamond sets run I - run IV

- Data Selection:
 - Reconstruction release 14.5.2
 - Data selection: require BGF multihadron and R2 < 0.8
 - Require LAT < 0.6 and \(I_0 > 3 \) for all photon candidates
 - Truth information is available in MC
 - Use beam vertex

- Use symmetric \(\pi^0 \)
 - Due to the E dependence of \(m_{\gamma\gamma} \) expect systematic mass shifts combining \(\pi^0 \)'s out of different \(\gamma \) energies.
 - To relate the \(\pi^0 \) mass to a single \(\gamma \) scale, we use symmetric \(\pi^0 \)'s.
 - 12 E bins in the range of 70 MeV - 2 GeV.
γ energy scale - E and θ dependence

 Calibration recipe

- Obtain γ energy scale parametrizations in data including errors for EMC_{barrel} and EMC_{forward}.
 - Measure in MC: $m^{\gamma\gamma}_{\text{corrected}}(E_\gamma)$ Known from MC studies:
 - γ scale exactly
 - Changes of $m^{\gamma\gamma}$ in E_γ bins with angular resolution
 - Changes of $m^{\gamma\gamma}$ with tail and resolution of E_γ
 - Measure in data: $m^{\gamma\gamma}(E_\gamma)$ Adjust to MC and correct for in data using MC studies:
 - Data / MC differences in tail and resolution of E_γ
 - Data / MC differences in angular resolution

- Apply the E and θ dependent parametrizations obtained from the true γ energy scale in EMC_{barrel} to the MC data.
- Apply the E dependent parametrizations obtained for EMC_{barrel} to data.
- Measure $m^{\gamma\gamma}$ in bins of the θ index (I_θ) for data and MC in EMC_{barrel}.
- The ratio $m^{\gamma\gamma}(MC) / m^{\gamma\gamma}(data)$ determines the γ energy scale in data in bins of I_θ.
Larger calibration factors due to increasing leakage at large E_γ.

Jörg Marks
EMC Calibration Meeting
Run 1: forward area shows an E dependence, but is flat in the barrel area.
γ energy scale in Monte Carlo - θ dependence, EMC_{barrel}

After applying E dependent MC calibration.

Jörg Marks

EMC Calibration Meeting
E scale from symmetric π^0's - E dependence, EMC_{barrel}

- E dependence of the γ energy calibration for data in the energy range from 70 MeV to 2 GeV.
\(\gamma \) energy scale from symmetric \(\pi^0 \)'s for \(\text{EMC}_{\text{forward}} \)

- Photon energy calibration for data in the energy range from 130 MeV to 2 GeV.

Run 1

- 3.5%

Run 2

- 2.8%

Run 3

- 2.8%

Run 4

- 3.0%
E scale from symmetric π^0's - θ dependence, EMC_{barrel}

- Photon energy calibration for data in the energy range from 70 MeV to 2 GeV for EMC_{barrel}.

Jörg Marks

EMC Calibration Meeting
Comparison of the γE scale in EMC_{barrel} and $EMC_{forward}$ (2)
Comparison of the γ E scale in EMC_{barrel} and EMC_{forward} (1)
Compare π^0 response in Data and MC

EMC response to π^0's

Determine E, θ dependence of $m(\pi^0)$ in data and MC after applying the corresponding E and θ dependent γ calibration parametrizations. Signal processing is similar as for the determination of the γ calibration parametrizations. The data samples are the same!

- **Symmetric π^0's with γ's in EMC_{All}**
 - Use i) the same binning and ii) a changed binning

- **All π^0's with γ's in EMC_{All}**
 - Use i) the same binning and ii) a changed binning

- **Resolution of $m(\pi^0)$**
No calibration, symmetric π^0's in EMC_{barrel} - E dependence

Run 1

$\frac{m_{\gamma\gamma}(\text{data})}{m_{\gamma\gamma}(\text{MC})}$ vs E_γ (GeV)

Run 2

$\frac{m_{\gamma\gamma}(\text{data})}{m_{\gamma\gamma}(\text{MC})}$ vs E_γ (GeV)

Run 3

$\frac{m_{\gamma\gamma}(\text{data})}{m_{\gamma\gamma}(\text{MC})}$ vs E_γ (GeV)

Run 4

$\frac{m_{\gamma\gamma}(\text{data})}{m_{\gamma\gamma}(\text{MC})}$ vs E_γ (GeV)
No calibration, all π^0's in $EMC_{\text{All}} - E$ dependence

1 γ is required to be within the E bin, the other is out of the energy range 70 MeV to 2 GeV.

Jörg Marks
EMC Calibration Meeting
Calibrated symmetric π^0's in EMC_{ALL} - E dependence

Run 1

Run 2

Run 3

Run 4

$Jörg$ $Marks$
EMC $Calibration$ $Meeting$
Calibrated symmetric π^0's in $EMC_{\text{barrel}} - E$ dependence

Run 1

Run 2

Run 3

Run 4

E_{γ}/GeV

$m_{\gamma\gamma}$ data, E, θ dep. calib.

$m_{\gamma\gamma}$ MC, true γ scale calib.
Calibrated symmetric π^0's in EMC_{barrel} - θ dependence

Run 1

Run 2

Run 3

Run 4

Jörg Marks
EMC Calibration Meeting
Calibrated all π^0's in $EMC_{ALL} - E$ dependence
Calibrated all π^0's in EMC_{ALL} - E dependence

1 γ is required to be within the E bin, the other is out of the energy range 70 MeV to 2 GeV.

Jörg Marks

EMC Calibration Meeting
Calibrated all π^0's in EMC$_{\text{barrel}}$ - θ dependence
π⁰ mass resolution in the EMC

Determination of the resolution

100 MeV < Eᵢ < 300 MeV

π⁰ signal treatment

Subtract combinatorial background

Measure FWHM, obtained from fitted Nov. Function to mγγ

Remaining correlated background is extrapolated to signal region and subtracted

\[\Delta_{\text{peak}} = 0.4 \text{ MeV} \]

Depending on the fit method shifts of the peak positions in the order of 0.1 to 0.3 MeV are easily obtained!
Resolution, symmetric π^0's in $\text{EMC}_{\text{barrel}}$ - E dependence

- **Run 1**
- **Run 2**
- **Run 3**
- **Run 4**

![Graphs showing data for Runs 1 to 4](image)

Jörg Marks

EMC Calibration Meeting
Resolution, all π^0's in EMC_{All} - E dependence

Run 1

Run 2

Run 3

Run 4

Jörg Marks
EMC Calibration Meeting
Resolution, all π^0's in $EMC_{\text{All}} - E$ dependence
Resolution, symmetric π^0's in EMC_{barrel} - E dependence

Run 1

Run 2

Run 3

Run 4

Jörg Marks

EMC Calibration Meeting
Resolution, all π^0's in EMC_{ALL} - E dependence

1 γ is required to be within the E bin, the other is out of the energy range 70 MeV to 2 GeV.

Jörg Marks

EMC Calibration Meeting
Summary

- Established a method to extract the γ energy scale from π^0 data.
- Determined a parametrization of the γ energy scale in E and θ (θ Index) for all runs in the energy range from 70 MeV to 2 GeV.
- While the γ energy scale in EMC_{barrel} and $EMC_{forward}$ is the same in MC, a different E dependence is observed for data. This effect decreased after introducing the hardware adapted binning.
- Very good description of $m(\pi^0)$ in data and MC for π^0’s after γ energy calibration.
- Considering all π^0’s the reconstructed $m(\pi^0)$ after γ energy calibration has the same constant value in data and MC and is independent of E and θ.
- Symmetric π^0’s show energy dependent $m(\pi^0)$ values at low energies.
- The π^0 mass resolution is not improving after γ energy calibration.
- A deviation in the π^0 mass resolution between data and MC of 17% at low E_γ for symmetric π^0’s in EMC_{barrel} was measured!
Conclusions

- We can release this part of the γ energy calibration.

 Next week we will have a talk by Johannes on our work of the energy scale from $\mu\mu\gamma$ data.

- Since the reconstructed $m(\pi^0)$ after γ energy calibration has the same constant value in data and MC and is independent of E and θ we do not need in most cases an energy dependent calibration of $m(\pi^0)$.

 We just need to scale $m(\pi^0)$ and $E(\pi^0)$ with the same constant value.

 But in principle $m(\pi^0)$ is a complicated function of E_{γ_1} and E_{γ_2}

- We need to do something about the data/MC deviation in $m(\pi^0)$!