Performance and Operation of the CsI(Tl) Crystal Calorimeter of the BaBar Detector

Calor 08
30.May.2008
Pavia, Italy

Andy Ruland
The University of Texas at Austin
On behalf of the BaBar EMC group
The PEP–II B–Factory at SLAC

- Asymmetric e^+e^- collider
 - 9 GeV e^-, 3.1 GeV $e^+ \Rightarrow 10.58$ GeV CM energy
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
 - Peak Luminosity: 12×10^{33} cm$^{-2}$ s$^{-1}$ (April 2008)
 - Data taking period ended in April 2008
 - Total Luminosity recorded: 531.4 fb$^{-1}$
BaBar physics program: mainly B physics, also τ and charm physics, and rare decay searches with high Luminosity.

Calorimeter main goal is the reconstruction of:
- Electrons
 - J/ψ meson reconstruction for $\sin(2\beta)$: $B^0 \rightarrow J/\psi K_s (J/\psi \rightarrow e^+ e^-)$
 - For B flavor tagging
- Photons from π^0/η and radiative decays
Calorimeter Design

- 6580 CsI(Tl) Crystals
- **Barrel**: 48 θ rings
 - 120 crystals/ring
- **Endcap**: 8 θ rings
 - 80/100/120 per ring
- 90% coverage in CM frame
- 14 mrad non–projectivity in θ
 - Fully covers Barrel/Endcap gap

- **Barrel**:
 - 280 Carbon Fiber modules
 - 7 along θ / 40 along ϕ
 - 21 crystals / module
 - 7 crystals in θ / 3 crystals in ϕ

- **Endcap**:
 - 20 Carbon Fiber modules
 - 8 crystals in θ / 4,5,6 in ϕ
 - 300 μm thick Carbon Fiber tube walls to hold crystals
CsI(Tl) Crystals

- 0.1% Thallium doping
- Trapezoidal shape
- Length:
 - 16.0 X_0 (bwd) and 17.5 X_0 (fwd)
- Tyvek wrapping for reflection (2x 165µm)
- Al foil and Mylar wrapping for electrical isolation
- 2 PIN Si photodiodes (2x1 cm2)
 - Epoxied to 2x2 cm2 polystyrene plate at crystal rear
- 2 preamps in readout box above crystal

NIM article

Readout Electronics

Data Readout Chain

- 2 fold redundancy
- x1, x32 amplification
- 13 bit dynamic range

- x4, x256 amplification
- Choose best range diode
- 10 bit ADC, 2 bit range
- Data sent via optical fiber

- Untriggered Readout
- FEX and Filtering
- Correct for pedestal gain
- Convert to full E range
- Copy to trigger
- If accepted, read E and t
Calorimeter Performance

- Energy Resolution:
 \[\frac{\sigma_E}{E} = \frac{\sigma_1}{4\sqrt{E}} \oplus \sigma_2 \]

 \[\sigma_1 = (2.30 \pm 0.03 \pm 0.3)\% \]
 \[\sigma_2 = (1.35 \pm 0.08 \pm 0.2)\% \]

- Angular Resolution:
 \[\sigma(\theta) = \frac{\sigma_1}{\sqrt{E}} \oplus \sigma_2 \]

 \[\sigma_1 = (4.16 \pm 0.04) \text{ mrad} \]
 \[\sigma_2 = (0.00 \pm 0.00) \text{ mrad} \]
π^0 and η Response

- 2 photon invariant mass plots for hadronic events
 - E_γ > 30 MeV
 - E_π^0 > 300 MeV

π^0 mass = 134.9 MeV
π^0 width = 6.5 MeV

η-mass = 547.0 MeV
η-width = 15.5 MeV
Calibrations

- **Electronics Calibrations**
 - Linearize response of on-detector electronics by charge injection to preamp inputs
 - Determines pedestals and overall gain
 - Corrects for cross talk between crystals
 - Performed during beam down times and after hardware replacement:
 - ~2/month and requires ~1hr. with no beam.

- **Single crystal calibrations**
 - Light yields and crystal uniformities change through radiation damage
 - Radioactive Source \Rightarrow Low energy crystal response
 - Bhabha \Rightarrow High energy crystal response
 - Lightpulser

- **Cluster energy calibrations**
 - Relate E_{cluster} to energy of incident e^\pm/γ
 - Deposited E depends on leakage that is a function of (θ, ϕ) and the detector material
 - $\pi^0 \rightarrow \gamma\gamma \Rightarrow 70 \text{ MeV} < E_{\gamma} < 2 \text{ GeV}$
 - $e^+e^- \rightarrow \mu^+\mu^-\gamma \Rightarrow 400 \text{ MeV} < E_{\gamma} < 6 \text{ GeV}$
 - See Jörg Marks’ talk for details on the cluster calibrations
Bhabha Calibration

- Used for single crystal calibration at high energies: 3–9 GeV (~ monthly)
 - Deposited cluster energy is constrained to equal prediction of GEANT based MC
- Solve linear equations so that c_i minimizes:

$$\chi^2 = \sum_k \frac{\left(\sum_i (c_i E_i^k) - E_{dep}^k \right)^2}{\sigma^k}$$

i – crystal index, k – cluster index
c_i – calibration constant
E_i^k – raw energy in crystal i
E_{dep}^k – deposited cluster energy from MC
σ^k – error
Radioactive Source Calibration

- Radioactive source used to set the low energy response for each crystal
 - n irradiated Fluorinert circulates through piping at front face of crystals
 - 6.13 MeV photon from 19F+n \rightarrow 16N+α, 16N \rightarrow β+16O* \rightarrow 16O + γ
 - 16N: $\tau_{1/2}$ ~ 7s
- 15–30 minute runs taken every 4±1 weeks with no beam in machine
- Resolution of constants: 0.33 %
- 2 failed generators over 10 year data taking period 2003, 2007 (red arrows)
Lightpulser Monitoring

- Daily lightpulser calibrations cover complete readout path from diodes to DAQ system
 - Time required for calibration: ~few minutes
- Xe lamp spectrum matched to emission freq. of CsI(Tl) scintillation
 - Allows monitoring of relative change in crystal response between calibrations
 - Also for diagnostics on electronics read out
Radiation Monitoring

- Radiation induced optical losses produce non uniform change in light yield along crystal length which degrade energy resolution.
- 116 p–channel MOSFET transistors arranged at the front face of crystals
 - **Barrel**: 56 / **Endcap**: 60 RadFETs
- Map integrated dose absorbed by different regions of calorimeter.
 - Radiative Bhabhas
 - Scattered beam particles interactions with residual gas in vacuum chamber
 - $E \sim$few MeV
Hardware Monitoring

- Hardware is monitored in real time using EPICS
- Monitoring takes place for 100’s of parameters
 - Temperature of electronics and crystals
 - I/V of electronics power supplies
 - Temperature and flow rates of chillers
- Readings archived in database
- Alarms are immediately passed to shifters and EMC On–Call Expert
 - Depending on severity, problems can be remedied within minutes

Barrel Crystal Temperatures
Temperature regulation needed to maintain integrity of crystal ↔ diode glue joints and LY of crystals. (~20±1°C)

Electronics and Crystal Cooling maintained by a set of chillers
- 3 independent Fluorinert chillers: 1 barrel, 1 endcap, and 1 spare that can be switched on to either barrel/endcap circuit or both
- Deionized Water chiller for barrel on–detector electronics
- Backup chiller system (BCS) can replace both water and Flourinert chillers in emergencies
Data Monitoring–1

- Live Data Monitoring
 - During data taking human checks made ~15 min.
 - Checks are made on occupancies, energy–time structure, energy/multiplicity profiles
 - Automated comparisons made between previous runs
 - 3 permanently dead crystals and typically 6–12 total masked/dead channels
 - Hardware intervention required for >70 crystals dead/masked out
Data Monitoring–2

- Event reconstruction monitoring
 - Done offline and run by run
 - Typical runs 45–55 minutes in length (Each blue dot represents a single run)
 - Above data from Nov 2005 through Aug. 2006
 - E/p of Bhabha’s, π^0 mass and width, occupancy multiplicities
 - Daily checks
Operational Performance

- For the last several years the EMC has been in a stable operation and maintenance mode
 - Result of first years hard work and automation of monitoring
- Typical maintenance activities:
 - On detector electronics (access required for repair)
 - ADB board (12 crystals) or IOB board (72 crystals) replacement
 - Typically O(3) boards replaced per access
 - Requires Detector access (~4+ hrs) so planned with PEP down time.
 - Can mask channels out of data taking if no access can be made (~5 min)
 - Water leaks from cooling lines
 - Off detector electronics (no access required)
 - Power supplies are unstable and tend to trip, cause data taking to stop
 - Power cycling, reseating, swapping with spares are normal (few minutes)
 - DAQ Read–Out Modules replacement ~1/month (few minutes)
- 1 major intervention
 - BaBar installed upgrade to muon system in Fall 2006 which required uncabling and removal of most of the front end calorimeter electronics for a period of 3 months.
 - 280 electronics boards remove/changed and all cabling rerouted
 - Not a single channel lost.
Summary

- 10 years of operation completed in April 2008
- High efficiency and excellent data quality for the past several years.
- High luminosity achieved by PEP–II did not adversely affect EMC performance
- SuperB has plans to reuse barrel crystals and support structure for their electromagnetic calorimeter.
Calorimeter Crystals

- Distribution of crystals by vendor inside the barrel

\[\theta \text{ index} \rightarrow \]

\[\phi \text{ index} \uparrow \]

- Crismatec
- Ronik
- Karkhov
- Shanghai
- Hilger
- Beijing
Calorimeter Design

- 6580 CsI(Tl) crystals – 0.1% Thallium doping
- **Barrel**: 48 rings along θ and 120 crystals/ring
- **Endcap**: 8 rings along θ with 80/100/120 crystals/ring
- Angular coverage
 - Polar angle: $-0.785 < \cos(\theta) < 0.962$
 - Azimuthal: 360°
- Crystals are non-projective in θ by 15mrad to minimize unmeasured energy loss due to inactive material between crystals.
 - Barrel \leftrightarrow Endcap gap fully covered by non-projectivity

90% coverage in CM frame
Calorimeter Support Structure

- **Barrel:**
 - 280 carbon fiber modules → 7 along θ; 40 along ϕ
 - Per module: 7 crystals in θ, 3 crystals along ϕ
- **Endcap:**
 - 20 carbon fiber modules → 8 crystals along θ; 4/5/6 along ϕ
CsI(Tl) Crystal Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Length</td>
<td>1.85 cm</td>
</tr>
<tr>
<td>Molière Radius</td>
<td>3.8 cm</td>
</tr>
<tr>
<td>Density</td>
<td>4.53 g/cm³</td>
</tr>
<tr>
<td>Light Yield</td>
<td>50,000 γ/MeV</td>
</tr>
<tr>
<td>Ligh Yield Temp. Coeff.</td>
<td>0.28%/°C</td>
</tr>
<tr>
<td>Peak Emission (λ<sub>max</sub>)</td>
<td>565 nm</td>
</tr>
<tr>
<td>Refractive Index (λ<sub>max</sub>)</td>
<td>1.80</td>
</tr>
<tr>
<td>Signal Decay Time</td>
<td>680 ns (64%)</td>
</tr>
<tr>
<td></td>
<td>3.34 µs (36%)</td>
</tr>
</tbody>
</table>
Electronics Calibration

- Calibrate gains by injecting known charge into preamps
- Different capacitors used to cover entire ranges (x1/4/32/256)
- Fit all 4 ranges simultaneously

Good Channel

Problem Channel
Radioactive Source Calibration

- **Left Plot:**
 - Relative light yield change over lifetime of BaBar.
 - Yellow bands represent periods of no collisions