Energy Measurement Prescription

Prescription should include:

• “Initial Calibration” (seldom: ~frequent enough to track drifts)
 – cross-calibration of mechanical movers, position readback
 – temperature coefficients of system
 – stray fields
 – something for BPMs here besides initial alignment?

• calibration procedures (regular: ~same frequency as measurement)
 – absolute BPM gain
 – relative BPM gain
 – ?

• Energy Measurement (as needed: continuous?)
Short-term Calibrations

• BPM Gains
 – At LEP we used:
 • beam tilts and offsets to measure relative gains of BPMS
 – “ladder” of different corrector settings ⇒ beam-based alignment
 • central frequency shifts to measure absolute gains
 – precisely-controlllable energy change

• At ILC:
 – will only have “straight-line” (null bending field) as calibration
 • probably want to sweep bend angle through $\pm \theta$ to “measure” effects of non-zero field at null point
 – another handle on stray fields, earth’s field, etc.
 – some systematics cancel

October 20, 2004
Mike Hildreth
Short-term Calibrations (cont.)

• At ILC:
 – will need a series of correctors upstream (downstream) of chicane to introduce (take out) tilts/offsets into incoming beam
 • also allows study of beam angle effects on BPM measurements
 • use for precise steering
 – Absolute gain done with BPM movers (?)
 • can do in course of energy measurement
Energy Measurement Procedure

- Continuous stair-step scan of B-field during routine operation

- Each field step *could* begin and end with a corrector sweep for relative gain calibration and mover steps for absolute gain

 Or: do this once at beginning and end of complete series of steps
Comments

- Length of each step is determined by
 - intrinsic stability
 - speed of gain drifts
 - mechanical/temperature drifts
 - “settle” time
 - noise
 - target of measurements
 - differentiation along bunch train?
 - statistics on train shape?