Design Considerations for a Si/W EM Cal. at a Linear Collider

M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell
Stanford Linear Accelerator Center

R. Frey
U. Oregon

SD Detector
• SD designed for excellent energy flow performance – with well-understood and somewhat constrained cost (see Snowmass Orange Book for details)

• Si/W ECal
 – 5mm transverse segmentation
 – [2.5 mm W (0.7 X₀), 0.4 mm Si] x30
 – \(R_m = 9\text{mm } (1 + \text{gap(mm)}/2.5) \rightarrow \text{Keep gaps small!} \)

In this talk:
• Some architecture and readout issues
• Dynamic range and some electronics issues
• Next steps
Si/W Readout-SD

- ~50 M pixels, 5x5 mm²
- Do NOT scale electronics by this number
- 1 chip per wafer
- 1 chip per ~1 m² of wafers
Noise

- GLAST Si electronics: $20e/pF + 200e \rightarrow \approx 2000e$ (fine)

Cooling

- NLC duty cycle is $\sim 10^{-4}$
 \hspace{1cm} \rightarrow$ Assume 10^{-3} power duty cycle
- GLAST elec. power: 2 mW/chan.
- For standard W alloy, can cool one edge of W plate
 \hspace{1cm} \rightarrow \approx 2^\circ$ rise (fine)

Dynamic Range

- MIPs
- 500 GeV Bhabha electrons
- EGS study: ≈ 2000 MIPs
- Maintain low-end resolution
 \hspace{1cm} \rightarrow$ 3 ranges of 12 bits
EGS Setup

- Use the G. Lindstrom, et al., recommendations* for E_{cut} in thin sampling layers. (Good accuracy with finite CPU time.)

- Reduced E_{cut}, P_{cut} in thin regions near the Si

- Step size small (0.3%) everywhere

- Broad shower max in depth $\sim 6.5 \pm 1 \ X_0$

- Fraction of energy in central $1\text{cm} \times 1\text{cm}$ is \simindependent of E_e:

\Rightarrow need big pixel size reduction to change dynamic range requirement significantly
- Charge amp. with ~ 10pf feedback cap.
- 3 ranges @ 12 bits
Next…

- Further design work
- Prototypes:
 - Silicon wafer with 5mm pixels and metallizations for wafer readout chip
 - Wafer readout chip
- The other readout chips
- A one wafer wide, full depth module for test beam