Measurement of Ab with Jet/Vertex-charge

V. Serbo
Ab from Jet/Vertex Charge

Victor Serbo
SLAC
SLD Collaboration Meeting
Chateau LaCresta, 10-12 February, 1998

• Status of:
 - Jet Charge 1993-95
 - Jet Charge 1996
 - Jet Charge 1997

• Jet Charge Summary and plans

• Vertex Charge
1993-95 A_b

- Analysis complete and final

 \[A_b = 0.911 \pm 0.045 \pm 0.045 \]

- PRL draft

 - Paper reading done
 - Preparing final version
 - Send out by March

Note: 1st paper on A_b with self-calibration
 (from SLD)
A Direct Measurement of Parity Violation in the Coupling of Z^0 Bosons to b Quarks Using a Mass Tag and Momentum-Weighted Track Charge

The SLD Collaboration
Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309

Abstract

We present a direct measurement of the parity-violation parameter A_b using a self-calibrating track-charge technique. The SLD experiment observes hadronic decays of Z^0 bosons produced in collisions between longitudinally polarized electrons and unpolarized positrons at the SLAC Linear Collider. A sample of $b\bar{b}$ events is selected using the topologically reconstructed mass of B hadrons. From our 1993–1995 sample of 11,092 selected $e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$ events we obtain $A_b = 0.911 \pm 0.045(\text{stat}) \pm 0.045(\text{syst})$.

To be submitted to Physical Review Letters

DRAFT – DO NOT QUOTE!
Comments to SERBO@SLAC.Stanford.EDU
• Preliminary result was reported last time
 High purity measurement

• Result is still "local" - tag problems

• Wait for new reconstruction of '96 data
Jet-Charge 1996, VERY Preliminary

\[A_b = 0.875 \pm 0.057 \text{(stat.)} \pm 0.053 \text{(syst.)} \]

Main A_b systematic errors.

<table>
<thead>
<tr>
<th>Error Source</th>
<th>Variation</th>
<th>1993-95</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Calibration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_b Statistics</td>
<td>1σ</td>
<td>3.7%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Hem. Correlation</td>
<td>JETSET, HERWIG,</td>
<td>1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>$p(Q_b)$ Shape</td>
<td>Triangular, other shapes</td>
<td>0.8%</td>
<td>0.8%</td>
</tr>
<tr>
<td>udsc Subtraction</td>
<td>50%</td>
<td>0.4%</td>
<td>0.1%</td>
</tr>
<tr>
<td>cosθ shape of α_b</td>
<td>MC Shape vs Flat</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag Composition</td>
<td>Mostly ϵ_c</td>
<td>1.5%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Detector Systematics</td>
<td>Tr.Eff. Corrections,</td>
<td>1.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Smearing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD</td>
<td>$\alpha_s \pm 0.02, 2^{nd}$ order</td>
<td>0.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>P_e</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0.8%</td>
</tr>
<tr>
<td>A_c</td>
<td>0.67 ± 0.08</td>
<td>0.8%</td>
<td><0.1%</td>
</tr>
<tr>
<td>A_{uds}</td>
<td>0.0 ± 0.50</td>
<td>0.1%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Gluon Splitting</td>
<td>100%</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4.9%</td>
<td>6.0%</td>
</tr>
</tbody>
</table>

* - Error not re-evaluated
Error on Purity: $\delta \Pi_b / \Pi_b$

- Total Error
- ϵ_s Systematics
- Rc Systematics
- ϵ_{other} Systematics
- Statistics
- Rb Systematics
- λ_b Systematics
- λ_c Systematics

mass cut

0.02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002
0
1.2
1.4
1.6
1.8
2
2.2

506
First look at 1994 Data

- Can go up to $|\cos \theta_{\text{thrust}}| < 0.8$
- Detailed study is needed.
 Multiplicity, Thrust axis determination
 Tracking eff. corrections, correlations

<table>
<thead>
<tr>
<th></th>
<th>MC truth</th>
<th>Data</th>
<th>$\Delta \theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Corrections</td>
<td>0.283±0.002</td>
<td>0.292±0.013</td>
<td>3.3%</td>
</tr>
<tr>
<td>with Corrections</td>
<td>0.258±0.002</td>
<td>0.310±0.014</td>
<td>2.9%</td>
</tr>
</tbody>
</table>
1997 R15 DATA/MC Comparison

\[\cos \theta_{\text{thrust}} \]

\[E_{\text{vis}} \]

Multiplicity
A_b from Jet-Charge, SLD 1997

![Graph showing tagged events vs. $\cos \theta_{\text{thrust}}$ for left and right hemispheres, with SLD Preliminary label.]
A_b, R15 97 DATA/MC

mass cut
\[
\begin{align*}
\text{Summary } j-c \text{ Ab} \\

\begin{array}{|c|c|c|c|}
\hline
\text{Year} & \text{Stat.} & \alpha_b \text{ Stat.} & \text{Syst.} \\
\hline
93-95 & 4.9\% & 3.7\% & 3.2\% \\
96 & 6.5\% & 4.9\% & <3.2\% \\
97 & 4.4\% & 2.5\% & <3.2\% \\
\hline
\text{Total:} & 2.9\% & 1.8\% & 3.2\% \\
\hline
\end{array}
\]

For 93-97: \(\frac{6_{\text{Ab}}}{\text{Ab}} = 5.5\% \)
A_{b} from Vertex-Charge, SLD 1997

![Graph showing tagged events vs. $\cos\theta_{\text{thrust}}$ for left and right sides.](image)

SLD Preliminary