Measurement of Time Dependent B(D)0 Anti-B(D)0 Mixing at SLD

Ming Xiong Liu
Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94309

SLAC-Report-675
December 1997

Prepared for the Department of Energy
under contract number DE-AC03-76SF00515

ABSTRACT

Measurement of time-dependent $B_d^0 - \bar{B}_d^0$ mixing at SLD

Ming Xiong Liu
Yale University
December 1997

The time dependence of $B_d^0 - \bar{B}_d^0$ mixing has been observed in events containing high-P_T leptons using a highly inclusive vertexing method to determine the B decay length and boost. The initial state B hadron flavour is determined using the large forward-backward asymmetry provided by the highly polarized electron beams of SLC in combination with a jet charge technique. From a sample of 150,000 hadronic Z^0 decays observed in the SLD detector at the SLC between 1993 and 1995, the mass difference between the two B_d^0 mass eigenstates has been measured to be $\Delta m_d = 0.486 \pm 0.065\text{(stat)} \pm 0.035\text{(syst)} \text{ps}^{-1}$.
Measurement of time-dependent
\[B_d^\circ - \overline{B}_d^\circ \] mixing at SLD

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

By
Ming Xiong Liu

Dissertation Director: Charlie Baltay

December 1997
Acknowledgements

I would like to thank many people for making this thesis possible. I am deeply indebted to my thesis advisor, Charlie Baltay, for his insightful guidance and for inspiring me with the love of physics. From him I have learnt not only the way to do good research, but also the importance of being able to see the wood of physics. This is the most important education I have received at Yale.

I personally thank Steve Manly, who actually played the roll of advisor, for his patient, reading through my thesis many times and makes it readable. He has been there for any kinds of discussions, with an always open office door. His insight of physics and insistence on excellence have always impressed me. He played a very important role in my graduate experience.

It has been a pleasure to work with the Yale SLD gang. I particularly thank Jeff Snyder from whom I learnt the first SLD code. Without him, my learning period could be much longer. His excellent work on the track 3D impact parameter has been extensively used in the analysis presented in this thesis. I also thank him for his careful reading of this thesis and suggesting on various matters from the physics contents to the grammar mistakes. I also thank Sumit Sen for his invaluable suggestions in writing code. His early work on the B boost helped me to develop the boost algorithm I used in this thesis. Thomas Moore, my fellow graduate student at Yale, brought me a lots of good questions to think about. His contribution to this thesis is innumerous.

In a large collaboration such as SLD, it is impossible to do any physics analyses without the collective efforts of many people. It has been a great pleasure to work with the B lifetime/mixing group in the past years. Among my fellows in the group, I am especially thankful to Stephane Willocq, Dong Su, Dave Jackson, Mike Ferro,
Tracy Usher and many others for fruitful discussions. I also would like to thank my fellow graduate student at MIT, Danning Dong, for making my countless trips to MIT full of joys during the hard time of new Vertex Detector (VXD3) construction. The VXD3 project would never be finished without our engineers Will Emmet and John Sinnott.

I would like to acknowledge other members of my thesis committee: Samuel MacDowell, Peter Parker and Michael Zeller for their careful reading of this thesis and their helpful comments.

I would like to thank Jean Belfonti for providing me with the opportunity to do teaching in the past years which gave me invaluable experience in the graduate school. Special thank goes to Brenda Naegel, Rochell Lauer and Carole DeVore for their kind assistance over the years.

In the last, I would like to extend my sincere appreciation to my wife. It is only because of her love and sacrifice that this thesis has become a reality. Thanks is not enough to my parents, for their continuous support throughout my education. I would like to dedicate this work to them.

This work was supported by the J. Sloane Fellowship, the N. Blatherwick Fellowship and the U.S. Department of Energy.
Contents

Acknowledgements iii

List of Figures viii

List of Tables xiii

1 Introduction 1
 1.1 Motivation 1
 1.2 Preview of $B_d^0 - \bar{B}_d^0$ Mixing Measurements 3

2 Theory 10
 2.1 The Standard Model 11
 2.1.1 QED - The best theory of electromagnetic interaction 13
 2.1.2 QCD - A theory of strong interaction .. 16
 2.1.3 Electroweak Interaction – Partial success toward grand unification 18
 2.2 Outstanding Questions in the SM 22
 2.2.1 Higgs Mechanism and Mass Generation .. 22
 2.2.2 CKM matrix and CP violation .. 25
 2.3 Physics at the Z^0 pole .. 28
 2.3.1 Production and Decay of Z^0 at the SLC ... 29
 2.3.2 Asymmetries at the Z^0 pole .. 31
 2.3.3 Selected Topics on B Physics .. 33
3 Experimental Apparatus

3.1 The SLAC Accelerator .. 45
3.2 SLC and Electron Beam Polarization 46
 3.2.1 Compton Polarimeter 50
3.3 The SLAC Large Detector 52
 3.3.1 Vertex Detector .. 54
 3.3.2 Luminosity Monitor 57
 3.3.3 Drift Chambers .. 58
 3.3.4 Čerenkov Ring Imaging Detector 60
 3.3.5 Calorimetry ... 63
 3.3.6 The Magnet .. 68
 3.3.7 Warm Iron Calorimeter 69

4 Monte Carlo Simulation ... 71
 4.1 Event Generator .. 71
 4.2 Detector Simulation ... 75
 4.3 Simulations of Run Related Processes 76

5 Event Selection and Analysis 77
 5.1 Event Trigger and Filter 77
 5.2 Event Selection and Reconstruction 78
 5.2.1 Track Selection 81
 5.2.2 Jet Finding ... 81
 5.2.3 Determination of the IP Position 83
 5.3 Time Dependent $B_d^0 \to B_s^0 \tau \bar{\nu}_\tau$ Mixing Analysis 85
 5.3.1 Lepton Identification and $Z^0 \to b \bar{b}$ Event Selection 86
 5.3.2 Initial State B Flavour Tagging 89
 5.3.3 Final State B Flavour Tagging and $B^0 \to \bar{B}^0$ Mixing 94
 5.3.4 Determination of B Decay Vertex Position 96
 5.3.5 Estimation of B Momentum 105
 5.3.6 B Decay Proper Time Reconstruction 114
 5.3.7 Maximum Likelihood Method 119
6 Results

6.1 Results ... 123
6.2 Systematic Errors 125
 6.2.1 Detector Resolution 127
 6.2.2 Physics Modeling 128
 6.2.3 Background Estimation 140
 6.2.4 Event Selection Bias and Δm_d Stability 144
6.3 Consistency Check 144
6.4 Total Error .. 144
6.5 Conclusions 146

Bibliography .. 150
List of Figures

1.1 Decay and oscillations of B mesons, $\tau = 1.5$ ps. (a)$\Delta m_d = 0.5$ ps$^{-1}$ close to B_d^0 system; (b)$\Delta m_s = 5.0$ ps$^{-1}$ expected for B_s^0 system. The solid and dashed lines are the unmixed and mixed functions, respectively. The corresponding mixed fractions as function of the proper time are also plotted. ... 5

1.2 Recent measurements of $\Delta m_d(p s^{-1})$ from the world (June 1997). The listed SLD results are from last year (ICHEP96). The result given in this thesis reflects our continues improvement of one of the above SLD measurements (marked by #). .. 9

2.1 The unitary triangle. ... 27

2.2 Spectator diagram for B hadron decay. 35

2.3 Feynman diagrams for B^0 mixing. 37

2.4 The CKM matrix unitary triangle and $B^0 - \bar{B}^0$ mixing measurements.

The dashed lines are current limit on $|V_{td}/V_{ts}|$ from Δm_d measurement which is dominated by theoretical uncertainty. This error can be reduced significantly by measuring Δm_s. ... 42

3.1 Layout of the SLC. ... 46

3.2 Polarized Electron Source. .. 47
Energy levels of unstrained and strained GaAs. The numbers next to the transition lines are the relative transition rates. The energy levels of the originally degenerated \(m = \pm \frac{1}{2} \) states are pushed down by \(\Delta E_{\text{strain}} = 0.05eV \). Without this degeneracy removal, Clebsch-Gordon coefficients gives the maximum electron polarization of 50%.

Z\(^0\)'s produced per day at SLD. X axis is the experimental run number.

The Setup of Compton Polarimeter.

The electron beam polarization vs time.

Cutaway view of the SLD.

Quadrant view of the SLD.

Artist's drawing of the VXD.

Cross-section of the Vertex Detector.

Design of the CDC basic cell.

Schematic diagram of the barrel CRID.

CRID readout technology.

Results from CRID during 1992 data run.

Layout of a LAC cell.

Schematic illustration of the event generation process.

Jet formation in the string fragmentation model.

Properties of Z\(^0\) hadronic events after event selection from data (dot) and Monte Carlo (solid line): (a) charged track multiplicity \(N_{\text{track}} \); (b) total visible energy \(E_{\text{vis}} \); (c) thrust axis direction; (d) VXD hit for each track.

Distributions of track quality parameters from data (dot) and Monte Carlo: (a) Track total momentum; (b) Normalized 3D impact parameter; (c) Chi-square per degree of freedom; (d) Track reconstructing starting point; (e) Number of CDC hits; (f) Track's closest approach to IP along Z direction.

Distribution of the number of jets in each events after lepton selection, \(y_{\text{cut}} = 0.015 \).
5.4 The opening angle between the b-hadron and the b-jet from Monte Carlo simulation. The b-jet is the one contains the high Pt lepton. $y_{cut} = 0.015$ optimizes the jet angular resolution.

5.5 The lepton momentum spectra for leptons from various sources.

5.6 The lepton momentum spectrum from B decays (CLEO Data). The lepton P_t spectrum at the Z^0 pole essentially reflects the above spectrum.

5.7 The initial state b and \bar{b} separation from the Monte Carlo simulation. (a) Polarized forward-backward asymmetry; (b) Opposite hemisphere jet charge.

5.8 Distributions of the total energy and number of tracks from quality jets.

5.9 The initial state b quark charge correct tagging probability as a function of the opposite hemisphere jet charge Q_{Jet}.

5.10 Distributions of the tagged initial state b-quark probability P^b_{mit} from data and Monte Carlo.

5.11 Spectator diagram for B hadron semileptonic decay.

5.12 Topology of the Semileptonic B decay.

5.13 Distribution of 3D normalized impact parameters of tracks from IP (solid) and secondary vertices (dashed).

5.14 Error in the POCA determination due to track errors.

5.15 Number of good tracks used for the vertex reconstruction, for data (dot) and MC (solid line).

5.16 POCA-RMS distributions from data (dot) and MC (solid line).

5.17 Reconstructed decay length distributions for leptons from various sources.

5.18 Reconstructed B hadron decay length resolution.

5.19 Schematic diagram of B hadron semileptonic decay. The scaled jet energy E_{jet} of $b-jet1$ is calculated from (E, \vec{P}) conservation using event jet topology. The missing neutrino energy can be estimated from the imbalance of the scaled jet energy.

5.20 The B hadron fragmentation energy function. $z = E_H/E_b$, with E_H and E_b are the B hadron and primary b quark energy, respectively.
5.21 Distributions of the scaled B-jet energy for 3-jet events and the missing energy in semileptonic B decays. 111
5.22 The vertex information is used to associate tracks to the secondary vertex. ... 112
5.23 The distance ratio of L/D from fragmentation (hatched) and secondary tracks. .. 113
5.24 Distributions of the reconstructed energy from charged and neutral particles associated to the B hadron, for data (dot) and Monte Carlo (solid line). .. 114
5.25 (a) Reconstructed boost from data and Monte Carlo. (b) The relative boost residual from MC. 115
5.26 Reconstructed proper time distributions for data and Monte Carlo events. Monte Carlo data also shows the contributions from various sources: non-$b\bar{b}$ events usually have small reconstructed proper time. 116
5.27 Average reconstructed B hadron decay proper time residual from Monte Carlo events. ... 117
5.28 B hadron proper time residuals (unit: ps) from Monte Carlo at different true proper time bins: (a) $0.0 \leq \tau \leq 0.5$ps; (b) $0.5 \leq \tau \leq 1.0$ps; (c) $1.0 \leq \tau \leq 2.0$ps; (d) $2.0 \leq \tau \leq 4.0$ps; (e) $4.0 \leq \tau \leq 6.0$ps; (f) $6.0 \leq \tau \leq 10.0$ps. The absolute proper time error grows as the proper time increases.. 118
5.29 B hadron proper time bias for leptons from cascade D decays. .. 119

6.1 Mixed fraction as a function of proper time for data (points) with the best fit curve assuming $\Delta m_s=6.5$ ps$^{-1}$. The flat dotted line represents the case with no B_d^0 mixing. ... 125
6.2 Mixed fraction as a function of proper time for Monte Carlo events (points) with the best fit curve assuming $\Delta m_s=6.5$ ps$^{-1}$. The flat dotted line represents the case with no B_d^0 mixing. ... 126
6.3 Reconstructed proper time distributions for $c\bar{c}$ and uds events. 142
6.4 Average b hadron lifetime from Data and MC. 145
6.5 \(B_d \) mixing measurements from the SLD. Values are quoted from last year (1996) publication. This thesis work updates the inclusive semileptonic \(B_d^0 \) mixing measurement. New final results from all four measurements will be released soon for this summer (1997).
List of Tables

2.1 Properties of the fundamental forces. 10
2.2 The fermion couplings to the Z^0. 22
2.3 Z^0 decay modes and branching ratios. 30
2.4 B hadron decay modes. .. 35

3.1 Properties of the Vertex Detector (VXD2). 58
3.2 Properties of the Central Drift Chamber. 61
3.3 Properties of the LAC. .. 68

5.1 Common SLD triggers. .. 78
5.2 Fractions of b-hadron species from $Z^0 \rightarrow b\bar{b}$ events. 79
5.3 Track quality cuts. ... 82
5.4 Cuts for lepton selection. All leptons also have passed the standard
 track quality cuts. ... 87
5.5 B decay length resolution. .. 104

6.1 Constrained parameters used in the maximum likelihood analysis. ... 124
6.2 Systematic errors due to finite detector resolutions. 128
6.3 Production rates of various b hadrons in the $Z^0 \rightarrow b\bar{b}$ events. ... 132
6.4 The final sample composition of B semileptonic decays from $Z^0 \rightarrow b\bar{b}$
 events from world average and SLD Monte Carlo (MC) input. 132
6.5 The measured B hadron lifetimes, from PDG96. 133
6.6 Summary of systematic errors from physics modeling. 141
6.7 Systematic errors from background uncertainties. 143
6.8 Δm_d stability vs lepton P_t cut. 144