FASTBUS AT THE FRONT END

R. W. Downing
Loomis Laboratory
University of Illinois, Urbana, IL 61801

SUMMARY

A major consideration in the initial design of FASTBUS was its applicability to front end hardware. A number of features have been incorporated to allow the front end designer a large degree of freedom but still maintain compatibility with the standard.

GENERAL

It is this author's view that we are in an era of great change in electronic equipment for high energy physics. Microprocessors and their cousins, the smart controllers, being incorporated in many designs. We are also now seeing devices such as FPLA's, PAL's, etc. becoming larger, faster, and more useful in replacing large amounts of "discrete" logic. On our doorstep are gate-arrays of all types. Smaller (100-1000 gates) in ECL provide the high speed we need; larger (1000-10,000+ gates) in slower logic families can be designed for certain specialized computations for physics.

All these new devices tend to be design intensive. Mistakes cannot be repaired by cutting plating and patching wires where necessary. The engineer must do more careful design checking before committing a design to hardware. At the same time, we are living with budgets which are not expanding. One solution not available is to hire more people to work on these new designs.

Where does FASTBUS fit in? Many papers over the past several years have discussed FASTBUS in terms of the handling and processing of data. To accomodate the microprocessor revolution this bus standard was definitely needed. CAMAC simply could not provide the necessary bandwidth or multiple control capabilities. Standard assignment of bits in control and status registers have been made for software compatibility. A FASTBUS diagnostic language (FDL) is in the final stage of testing and will be released shortly. FASTBUS also provides a well defined mechanical package. The printed board specification is standard commercial tolerances. The board itself rides in the card guide. Front panels are not necessary and can be eliminated if one feels the cost savings merit it. The voltages specified are standard. The power supplies are not part of the card cage specification so the user may tailor them to the specific system. FASTBUS fits all around the users design providing standard building block and frees the designer to concentrate on unique parts of the system.

HARDWARE

The preliminary specifications were published for the purpose of evaluating the standard and, where necessary, fix problems with it before the final document was published. The review at the end of the FASTBUS prototyping period showed that not enough room had been allotted in the auxiliary area for making connections. The card size was increased by one 'U' (1.75 in.) and the connectors on the card repositioned. The board outline remains, as before, compatible with the Eurocard system. By maintaining this level of compatibility some economic gains are available to the user from the standardization of chassis parts.

The hardware used in a FASTBUS system can be as simple or as complex as necessary. The things that are specified in detail are the card size, the main bus connector, and the position of that connector on the printed circuit board. The specification for the chassis is that it accomodate the card and provide the connection to the main bus. The method of construction of the chassis and backplane is left to the user. Obviously, standard chassis will be sold by companies and, although they will contain features one does not need for some jobs, the user must decide if he can justify the design and prototyping cost of constructing his own version.

Both the main bus connector and the recommended connector in the auxiliary area are two piece post and box type on .100 in. grid. The main connector is two rows on this .100 in. grid providing 130 pins. If the user wishes, the recommended auxiliary connector can be identical with the main connector. These connector patterns are symmetrical about the horizontal centerline of the card. Figure 1 shows the essential dimensions.

Work supported by Department of Energy, contract DE-AC02-76ERO-1195

- 142 -
FASTBUS CARD OUTLINE

FIGURE 1.

FASTBUS BACKPLANE
ANALOG POWER DISTRIBUTION

FIGURE 2.
The pins in the auxiliary area also project in the rear of the backplane. Since they are on .100 in grid many types of insulation displacement connectors may be directly attached. By using the auxiliary area as a feedthrough panel, the usual mass (mess) of cabling that is hanging in the front of racks may be moved to the rear. Removing these cables from the front allows easy servicing of modules without disturbing the cabling to the detector or elsewhere.

If the user needs some special connectors, the recommended chassis design provides for methods of attaching transition printed circuit boards to these rear projecting pins. The main advantage here with the FASTBUS standard is the flexibility the designer has in solving cabling problems and still work with a standard design.

The MARK III experiment implemented the trigger using three prototype FASTBUS chassis. All signals that come into the trigger from the detector attach in the rear. The backplane design for standard FASTBUS chassis. The inner layers, except for one which has the 'T' pin, carry just power. Three of the inner layers should be a minimum of four ounce copper, the rest are two ounce copper. A backplane metal $300 before the connectors are press fit in place both the signal and power wiring are complete. Backplanes with only 2 layers can be purchased for about $100 but one still has to buy busbars and attach them. It is very difficult to deliver 300 amperes to a card cage and control the voltage drops correctly. Large copper sheets are very effective in delivering currents of this magnitude with drops of 10 millivolts or less over the entire backplane. The connector cost must be included to this, however, that cost is essentially independent of the method of mounting and attaching to the pins. On the average this cost will be six to eight cents per pin. The mated cost per line will be from fifteen to twenty cents per line. This is about what one pays for edgecard connections; remember the gold fingers are not free.

The last hardware problem most often encountered and least often considered at the initial design phase of a system is cooling. FASTBUS considered the cooling problem early in the writing of the standard. The guidelines for chassis construction, airflow, and heat removal in general are detailed in the document and its appendices. These should be of great help to the designer. In addition, many internal FASTBUS reports are available on this subject. The designer should consult this portion of FASTBUS early in the design phase. It is difficult, if not impossible to retrofit cooling into a 1500 watt chassis.

BUS COMPATIBILITY

The fundamental operations on the bus are asynchronous in nature. A bus master issues timing request signals which are expected to be answered by timing response lines. The standard protocol also has a synchronous data transfer operation specified, however this probably does not gain one any operating speed when the communication is confined to a single backplane.

To be compatible with standard FASTBUS devices only a minimum number of lines need to be obeyed. Ten lines are used to handle the multilayer arbitration. The bus has two lines (RB and BH) which are used to reset all devices on the bus. Two timing lines (AS and AK) define the master to slave lock. The ten arbitration lines along with these four lines must be used in a standard fashion.

The designer, if there are definite needs, can remain physically and electrically compatible by simply obtaining control of the bus in the standard fashion, obeying the protocol on the four lines mentioned above, and then running any protocol he desires on the remaining 46 bus lines.

If the user wishes to communicate from one chassis to another through standard Segment Interconnects two more timing lines.
must be obeyed; DS and DK. Additionally, the direction of information flow must be consistent with the direction standard protocol would cause the Segment Interconnect to point its transceivers. The user could then invent a private protocol on the remaining 44 lines.

Within the standard backplane are additional lines for use by front end equipment. Two sets of daisy chain lines along with an associated return line may be used to sequentially scan modules. The disadvantage of this type of readout is the inability to skip bad units or remove a card and continue operating without patching the daisy chain across to the next unit. These systems are also difficult to troubleshoot due to the inability to sit on a suspected faulty unit and continuously access it.

Another point needs to be made about daisy chain systems. A study group, early in the design of FASTBUS, tried to see if significant readout speed was gained by using daisy chain instead of a handshake protocol such as FASTBUS. Their conclusion was that the daisy chain had no advantage over a handshake protocol. Some of the reasons in the past concerning economics of hardware I believe are no longer viable when one considers the total cost including testing and maintenance. A standard readout system comes out ahead.

In addition to the daisy chain lines a 'N' line type pin is available at each position in the chassis. These pins are the 'T' pins, so called because they connect in a 'T' fashion at each card slot to the corresponding data bus line. For example, the 'T' pin at position 5 is connected to Address/Data <05>, etc. These lines may be used in conjunction with a control line to obtain one bit of data from a position. Since these pins are hooked to the 32 bit data bus, the operation may be carried out in parallel to all positions in the chassis simultaneously.

Fast readout schemes can be conceived using the 'T' pins. For example, the controller does a pattern read to the entire chassis. Each device containing data asserts its 'T' pin. This operation gives the controller cards which previously indicated data present by a 'T' pin type addressing, or maybe converts the pattern data to a five bit geographical address and obtains the data in a more conventional FASTBUS manner.

FASTBUS has provisions in the standard to allow just this type of remote diagnostic capability. Designers are encouraged to implement control and status registers. Since these are standardized for the more common functions it is easy for other people familiar with FASTBUS to check the system. Computer readable ID numbers in modules insure that parts of the system are correctly in place. A quick computer scan of the system can save many hours of lost running due to misplugged modules.

The asynchronous nature of the FASTBUS control along with the Wait (WT) line lets monitoring modules stop operation, single step the bus, and possibly control the bus if necessary. This single stepping feature along with a 'back door' serial diagnostic system will let the FASTBUS user obtain a maximum amount of information even if the computer does not have access to a crate via the main bus. SLAC has a SNOOP module under construction to serve just this function. The bus protocol is under software control when it is necessary. This allows the SNOOP to simulate some private protocols and serve as a diagnostic tool for more than just standard FASTBUS protocol devices.

The serial system in FASTBUS is similar to ETHERNET, although at the moment it operates at about 100khz instead of the 10mhz proposed for ETHERNET. When the LSI integrated circuits become available the serial diagnostic system will be upgraded. It is possible that ETHERNET devices may be coupled to FASTBUS and give the user another method of attaching computers and peripheral equipment.

One issue raised when discussing the additional diagnostic registers is the added cost of the IC's. That is true; IC's and their cost of installation are not free. However, when accelerator time is costing many thousands of dollars an hour, the savings from a few IC's soon turn into sizable savings. With current budgets severely restricted, the accelerator operating time will become more valuable and force experimenters to use it more efficiently.

Next let's look at FASTBUS and testing. Often the last thing considered when building special systems is the design of test fixtures. Here again adherence to a standard can be of help. If one assumes a standard crate and power supply are available in the lab, a portion of the test fixture is automatically present. If one also has a general purpose register driven FASTBUS interface then the entire test fixture may present with a little programming. Staying with a standard will also provide one automatically with extenders, test boxes with switches, or a host of other devices. How much effort has been wasted because a special piece of electronics didn't have all the tools to test it available? Following the standard also has the advantage of giving one the same tools away from home.

The problem is compounded when a good design at one place is used by someone at a
second place. The new user is now faced with no chassis, no test gear, no extenders, etc. The cycle repeats --- the first place cannot loan the equipment since they need it for their own operation and don't have a spare.

CONCLUSION

The FASTBUS standard has attempted to solve not only sophisticated communication and data processing problems but also provide a vehicle for building to a standard systems that were in the past only doable with special designs. This is not to imply that all electronics for High Energy Physics will be FASTBUS. A large amount of older equipment in CAMAC and other packages is still useable. Certain restrictions at the very front end electronics which directly mount on the detector require special layouts. There may also be some very fast triggers which also require special connections --- these may be, however, candidates for a FASTBUS hardware only package. It does seem to this author that once the signal processing passes the directly attached printed circuit boards that very serious considerations must be given before designing hardware which does not conform to all, or at a minimum, at least a portion of a standard.

FURTHER INFORMATION

Anyone interested in FASTBUS should obtain a copy of the latest document from:

Louis Costrell
National Bureau of Standards
Center for Radiation Research
Washington, DC 20234

Many additional internal FASTBUS committee reports and reprints of articles are also available. Approximately 140 such documents are cataloged. To obtain a list write:

Ray Larsen
SLAC
P.O. Box 4049, Bin 26
Stanford, CA 94305