Measurements of the Branching Fractions of Exclusive Charmless B Meson Decays with eta-prime or omega Mesons

The BABAR Collaboration

Submitted to Physical Review Letters

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported by Department of Energy contract DE-AC03-76SF00515.
Measurements of the branching fractions of exclusive charmless B meson decays with η' or ω mesons

The BaBar Collaboration

We report results of searches for B decays to charmless two-body final states containing η' or ω mesons, based on 20.7 fb$^{-1}$ of data collected with the BABAR detector. We find the branching fractions $\mathcal{B}(B^+ \to \eta' K^+) = (70 \pm 8 \pm 5) \times 10^{-6}$, $\mathcal{B}(B^0 \to \eta' K^0) = (42^{+13}_{-11} \pm 4) \times 10^{-6}$, and $\mathcal{B}(B^+ \to \omega \pi^+) = (6.6^{+2.1}_{-1.8} \pm 0.7) \times 10^{-6}$ where the first error quoted is statistical and the second systematic. We give measurements of four additional modes for which the 90% confidence level upper limits are $\mathcal{B}(B^0 \to \omega K^0) < 13 \times 10^{-6}$, $\mathcal{B}(B^+ \to \eta' \pi^+) < 12 \times 10^{-6}$, $\mathcal{B}(B^+ \to \omega K^+) < 4 \times 10^{-6}$, and $\mathcal{B}(B^0 \to \omega \pi^+) < 3 \times 10^{-6}$.

PACS numbers: 12.15.Ji, 13.25.Hw, 14.40.Nd

We reconstruct a B meson candidate by combining an ω or η' candidate with a charged track, $\pi^0 \to \gamma\gamma$, or $K^0_{\pi} \to \pi^+\pi^-$. The resonance decays R we reconstruct are $\omega \to \pi^+\pi^-\pi^0$, $\eta' \to \eta\pi^+\pi^- (\eta'_{\pi\pi\pi})$, or $\eta' \to \rho^0\gamma (\eta'_{\rho\gamma})$, with $\eta \to \gamma\gamma$ and $\rho^0 \to \pi^+\pi^-$. These modes are kinematically distinct from the dominant B decays to heavier charmed states. Backgrounds come primarily from combinatorics among continuum events in which a light quark pair is produced instead of an $\Upsilon(4S)$.

Monte Carlo (MC) simulations [6] of the target decay modes and of continuum background are used to establish the event selection criteria. The selection is designed to achieve high efficiency and retain sidebands sufficient to characterize the background for subsequent fitting. Photons must satisfy $E_\gamma > 50$ (100) MeV for π^0 (η) candidates, and $E_\gamma > 200$ (100) MeV for $\eta' \to \rho^0\gamma$ candidates from $\eta'_{\rho\gamma}$. B decays. We select ω, η', η, and ρ candidates with the following requirements on the invariant masses in MeV/c^2 of their final states: $735 < m(\pi^+\pi^-\pi^0) < 830$, $930 < m(\eta\pi^+\pi^-) < 990$, $900 < m(\rho\gamma) < 1000$, $490 < m(\gamma\gamma) < 600$, and $500 < m(\pi^+\pi^-\pi^0) < 995$. For π^0 and K^0_{π} candidates we require $120 < m(\gamma\gamma) < 150$ and $488 < m(\pi^+\pi^-) < 508$.

Tracks in ω or η' candidates must have DIRC, dE/dx, and EMC responses consistent with pions. For charged B decays, the B primary track must have an associated DIRC Cherenkov angle within 3.5σ of the expected value for a kaon or pion. For modes with K^0_{π} the three-dimensional flight distance from the production point must exceed 2 mm, and the angle between the flight and momentum vectors projected perpendicular to the beam must be less than 40 mrad.

A B meson candidate is characterized by two kinematic observables. The minimally correlated pair we use are the energy constrained mass m_{EC} and energy difference ΔE. In the $\Upsilon(4S)$ frame the B meson energy E^\ast equals the beam energy E^beam_E. A kinematic fit of the measured candidate four momentum in this frame with the constraint $E^\ast = E^\text{beam}_E$ yields m_{EC}, while $\Delta E \equiv E^\ast - E^\text{beam}_E$ measures the consistency of this constraint. We require $|\Delta E| \leq 0.2$ GeV, and $m_{EC} \geq 5.2$ GeV/c^2. The resolutions on these quantities are mode dependent but average about 30 MeV and 2.8 MeV/c^2, respectively.

To discriminate against tau-pair and two-photon background we require the event to contain at least five
charged tracks. To reject continuum background we make use of the angle θ_T between the thrust axes of the B candidate and the rest of the tracks and neutral clusters in the event, calculated in the center-of-mass frame. The distribution of $\cos \theta_T$ is sharply peaked near ± 1 for combinations drawn from jetlike $q\bar{q}$ pairs, and nearly uniform for the isotropic B meson decays.

The yields are obtained from extended unbinned maximum likelihood (ML) fits, with two variants. The first, which provides our results for all modes except $B^0 \rightarrow \omega \pi^0$, uses several uncorrelated variables representing the B decay kinematics and a Fisher discriminant representing the production and energy flow; we require $|\cos \theta_T| \leq 0.9$. The second is applied to all channels with an ω meson, with a fit of ΔE and the output of a neural network built from the remaining inputs; we relax the preliminary requirements to $100 < m(\gamma \gamma) < 160 \text{MeV}/c^2$ and $|\Delta E| < 0.3 \text{GeV}$. Comparisons for the $\omega \pi^+$, ωK^+, and ωK^0_s modes show that the central values and errors for the yields obtained by the two approaches are in very good agreement. Simple cut-based analyses are performed as checks for each final state. Agreement of central values is good in all cases, although, as expected, errors are larger than for the ML analyses, particularly for modes having high background.

The ML fit input observables are ΔE, m_{EC}, the invariant mass $m_{f\bar{f}}$ of the intermediate resonance, the Fisher discriminant F, and, where relevant, the η mass m_η, the measured DIRC Cherenkov angle for the B primary track, and the cosine H of the helicity angle, the angle in the ω rest frame between the normal to the ω decay plane and the B flight direction. The Fisher discriminant [7] combines eleven variables: the angles with respect to the beam axis in the $T(4S)$ frame of the B momentum and B two-body decay axis, and a nine bin representation of the energy flow about the B decay axis. The neural network is constructed with the B momentum p^*, a χ^2 for resonance masses, H, and variables representing energy flow and angular distributions, including θ_T.

We use MC to estimate backgrounds from other B decays, including final states with and without charm. For most of our modes we find contributions that are negligible. For the $\eta^f \rightarrow \rho^0 \gamma$ modes we account for small cross feed contributions in the systematic error estimate.

The likelihood function for N events is

$$L = \frac{e^{-(\sum n_i)}}{N!} \prod_{i=1}^{N} L_i, \quad L_i = \sum_{j=1}^{m} n_j P_j(x_i).$$

Here n_j is the population size for species j (e.g., signal, background) and $P_j(x_i)$ the corresponding probability distribution function (PDF), evaluated with the observables x_i of the ith event.

For the fits of charged B decays L_i becomes

$$L_i = n_\pi P_{\pi\pi}(x_i) + n_K P_{K\pi}(x_i) + n_C \left[f_{KC} P_{KC}(x_i) + (1 - f_{KC}) P_{\pi\pi}(x_i) \right],$$

where $n_j(n_K)$ is the number of $B^+ \rightarrow R\pi^+(B^+ \rightarrow RK^+)$ signal events, n_C is the number of continuum background events, and f_{KC} is the fraction of continuum background events for which the B primary track is identified as a kaon. These quantities are the free parameters of the ML fit. The probabilities for the components are $P_{\pi\pi}(P_{KS})$ for $B^+ \rightarrow R\pi^+(B^+ \rightarrow RK^+)$ signal and $P_{EC}(P_{KC})$ for background where the primary track is a pion (kaon). Since we measure the correlations among the observables in the data to be small, we take each P_j to be a product of the PDFs for the separate observables. The analyses involving a K^0_s are treated identically except that there is only one component of signal and of continuum background.

A second B candidate satisfying the preliminary cuts occurs in about 10–20% of the events. In this case the “best” combination is selected according to a χ^2 quantity computed with m_{EC}, m_{KS}, m_η (for $\eta^f \rightarrow \eta\pi^+\pi^-$ modes), and the Fisher discriminant.

![Fig. 1: Invariant mass distributions for inclusive data samples for (a) η', (b) ω candidates, with fit curves overlaid. The Gaussian peak widths are 4 and 10 MeV/c², respectively.](image)

We determine the PDFs for the likelihood fit from simulation for the signal component, and from off-resonance and sideband data for the continuum background. Peaking distributions (signal masses, ΔE, F) are parameterized as Gaussians, with or without a second Gaussian or asymmetric width as required to describe the distributions. Slowly varying distributions (combinatoric background under mass or energy peaks, H, or F) have first or second order polynomial shapes. The combinatoric background in m_{EC} is described by a phase space motivated empirical function [8]. Control samples of B decays to charmed final states of similar topology are used to verify the simulated resolutions in ΔE and m_{EC}. Inclusive resonance production samples such as those shown in Fig. 1 are used similarly for the relevant B daughter mass spectra.

We compute the branching fractions from the fitted
signal event yields, reconstruction efficiency, daughter branching fractions, and the number of produced \(B \) mesons, assuming equal production rates of charged and neutral pairs. To determine the reconstruction efficiency, including any yield bias of the likelihood fit, we apply the method to simulated samples with the signal and continuum background populations expected in the data. Table I shows for each decay chain the branching fraction we measure, together with the quantities entering into its computation. The statistical error on the number of events is taken as the shift from the central value that changes the quantity \(\chi^2 = -2 \log \left(L/L_{\text{max}} \right) \) by one unit. We also give the significance \(S \), computed as the square root of the difference between the value of \(\chi^2 \) for zero signal and the value at its minimum. The \(\chi^2 \) used for significance includes a term that accounts for the additive systematic error. Where the significance is less than four standard deviations, we quote also (Bayesian) 90% CL upper limits, defined by the solution \(B \) to the condition \(\int_0^B L(b)db/\int_0^\infty L(b)db = 0.9 \).

In Fig. 2 we show projections of \(m_{EC} \) and \(\Delta E \) for the modes with significant yields. The projections are made by selecting events with signal likelihood (computed without the variable plotted) exceeding a mode-dependent threshold that optimizes the expected sensitivity.

We have evaluated systematic errors, which are dominated in most cases by the PDF uncertainties (3–18%, depending on the decay mode). To determine these we vary parameters of the PDFs within their uncertainties and observe the impact on the fit yield. We include them in upper limits by convolution with the likelihood function. This is the only additive systematic error; all others are multiplicative. The estimate of any systematic bias from the fitter itself (1–4%) comes from fits of simulated samples with varying background populations.

Auxiliary studies lead to systematic errors of 1%, 1.25%, and 5% respectively reflecting our knowledge of track, photon, and \(K^0_S \) efficiencies. These errors are summed linearly for the \(B \) daughters and the unconstructed \(B \), which must contribute tracks to achieve the event multiplicity requirement. Our estimate of the \(B \) production systematic error is 1.6%. Published world averages [9] provide the \(B \) daughter branching fraction uncertainties.

Systematic errors associated with the event selection are minimal given the generally loose requirements. We account explicitly for \(\cos \theta_T \) (1%), for which we observe a nearly uniform distribution in the signal simulation. We also include errors of 4% from those PID requirements that are imposed via cuts rather than the fit.

We have observed signals of at least \(4\sigma \) in five of the decay chains studied here, as reported in Table I. Where we have multiple chains for a given mode we combine the results by adding the \(\chi^2 \) distributions that represent them and their uncorrelated statistical and systematic errors. For the measurements that are consistent with zero we also derive

<table>
<thead>
<tr>
<th>Mode</th>
<th>Signal yield</th>
<th>Efficiency</th>
<th>Branching fraction</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_{K^+})</td>
<td>0.3 (\pm) 0.0</td>
<td>0.2 (\pm) 0.0</td>
<td>0.1 (\pm) 0.0</td>
<td>(10^{-6})</td>
</tr>
<tr>
<td>(\eta_{\pi^+})</td>
<td>0.2 (\pm) 0.0</td>
<td>0.1 (\pm) 0.0</td>
<td>0.0 (\pm) 0.0</td>
<td>(10^{-6})</td>
</tr>
<tr>
<td>(\eta_{\pi^0})</td>
<td>0.1 (\pm) 0.0</td>
<td>0.0 (\pm) 0.0</td>
<td>0.0 (\pm) 0.0</td>
<td>(10^{-6})</td>
</tr>
<tr>
<td>(\eta_{K^0})</td>
<td>0.0 (\pm) 0.0</td>
<td>0.0 (\pm) 0.0</td>
<td>0.0 (\pm) 0.0</td>
<td>(10^{-6})</td>
</tr>
<tr>
<td>(\eta_{\pi^0})</td>
<td>0.0 (\pm) 0.0</td>
<td>0.0 (\pm) 0.0</td>
<td>0.0 (\pm) 0.0</td>
<td>(10^{-6})</td>
</tr>
</tbody>
</table>
90% CL upper limits $\mathcal{B}(B^0 \to \omega K^0) < 13 \times 10^{-6}$, $\mathcal{B}(B^+ \to \eta' \pi^+) < 12 \times 10^{-6}$, $\mathcal{B}(B^+ \to \omega K^+) < 4 \times 10^{-6}$, and $\mathcal{B}(B^0 \to \omega \pi^0) < 3 \times 10^{-6}$.

The final results are generally in agreement with those previously reported [10, 11], with somewhat smaller errors. In particular, we confirm the expected $\mathcal{B}(B^+ \to \omega \pi^+) > \mathcal{B}(B^+ \to \omega K^+)$, and the rather larger than predicted [12] rate for $B \to \eta' K$ obtained by the CLEO Collaboration [10]. Conjectured sources of η' enhancement include flavor singlet [13], charm enhanced [14], and constructively interfering internal penguin diagrams [12, 15]. Our results in combination with expected measurements of related modes involving η and K^+ should help clarify this situation.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università di Perugia, Perugia, Italy.
† Also with Università della Basilicata, Potenza, Italy.
[1] Charge conjugate states are implied throughout this paper.
[5] See Fig. 1(b) in BABAR Collaboration, B. Aubert et al., SLAC-PUB-8838, hep-ex/0105061, Phys. Rev. Lett. (in press).
[8] With $x \equiv m_{EC}/E_b$ and ξ a parameter to be fit, $f(x) \propto x \sqrt{1 - x^2} \exp \left[-\xi (1 - x^2) \right]$. See ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241, 278 (1990); 254, 288 (1991).