A study of $B^0\bar{B}^0$ oscillations with full reconstructed B mesons with the BABAR detector

Shahram Rahatlou
University of California, San Diego
Physics Department, 9500 Gilman Drive, La Jolla CA 94306, USA
representing the BABAR Collaboration

Abstract

Time-dependent $B^0\bar{B}^0$ flavor oscillations are studied in e^+e^- annihilation data collected with the BABAR detector at center-of-mass energies near the $T(4S)$ resonance. We report a preliminary result for the time-dependent $B^0\bar{B}^0$ oscillation frequency, $\Delta m_d = 0.512 \pm 0.017 \pm 0.022 \, \text{fs}^{-1}$.

Contributed to
The Meeting of
The Division of Particle and Fields
of the American Physical Society
Columbus, Ohio, USA
August 9 - August 12, 2000

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC03-76SF00515.
1 Introduction

We have performed a measurement of time-dependent mixing at the PEP-II asymmetric e^+e^- collider at SLAC, where resonant production of the $\Upsilon(4S)$ provides a copious source of $B^0\bar{B}^0$ pairs. The data set used for this analysis corresponds to an integrated luminosity of 8.9 fb$^{-1}$ on the $\Upsilon(4S)$ resonance and 0.8 fb$^{-1}$ collected 40 MeV below the resonance. This corresponds to about 10.1×10^6 produced $B^0\bar{B}^0$ pairs.

The BABAR detector is described in detail elsewhere [1]. The analysis described here uses all the detector capabilities, including high resolution tracking and calorimetry, particle identification and vertexing.

2 Event Reconstruction

We fully reconstruct one B meson (B_{REC}) in hadronic ($B^0 \rightarrow D^{(*)-}\pi^+$, $D^{(*)-}\rho^+$, $D^{(*)-}a_1^+$ and $J/\psi K^{*0}$) or semileptonic ($B^0 \rightarrow D^{*-}\ell^+\nu$) decay mode. A total of 2577 neutral B candidates is reconstructed in hadronic decay modes, with an average purity close to 90%. The main background for these modes is combinatorial. 7517 B^0 candidates are reconstructed in the semileptonic mode, with an average purity close to 84%. Backgrounds to the semileptonic mode are due to combinatorial D^* fake leptons, uncorrelated $D^* l$ combinations, $\alpha\bar{e}$ events, and charged B decays from $B^- \rightarrow D^{*-}(n\pi)\ell^-\nu$.

The other two important ingredients for this analysis are the vertex reconstruction and the identification of the flavor of the other B meson (B_{TAG}) in the event. The flavor of the B_{TAG} is determined from the correlation between the particle types and the charge of its decay products [2]. If there is an identified lepton its charge is used; otherwise the summed charge of identified kaons provides the tag. An event with no tagging leptons or kaons can still be tagged by the use of a neural network that exploits the flavor information carried by other decay products, such as soft leptons from charm semileptonic decays and soft pions from D^* decays.

At PEP-II the B meson pairs produced in the decay of the $\Upsilon(4S)$ resonance are moving in the lab frame along the beam axis (z direction) with a Lorentz boost of $\beta_{\gamma} = 0.56$. The separation between the two B vertices along the boost direction, $\Delta z = z_{\text{REC}} - z_{\text{TAG}}$, is measured and used to estimate the decay time difference, $\Delta t \approx \Delta z/\beta_{\gamma}c$. The B_{TAG} vertex is determined via an inclusive procedure applied to all tracks not associated with the B_{REC} meson [3]. The typical separation between the two vertices is $\Delta z = \beta_{\gamma}cT_B \approx 260 \mu m$, to be compared to the experimental resolution $\sim 100 \mu m$. The Δt resolution is limited by the precision on the B_{TAG} vertex, and has little dependence on the decay mode of the B_{REC}. The Δt resolution function is well described by three Gaussians: core, tail and outlier. We calculate the uncertainty on Δt by using a globally-fitted rescaling of the event-by-event vertex separation errors. Most of the events, $\sim 70\%$, are in the core Gaussian, with $\sigma \sim 0.6$ ps.

3 Likelihood Fit method

The time-dependent asymmetry between same sign $B^0\bar{B}^0/\bar{B}^0B^0$ (unmixed) and opposite sign $B^0\bar{B}^0$ (mixed) events, $A(\Delta t) = (N_{\text{unmix}} - N_{\text{mix}})/(N_{\text{unmix}} + N_{\text{mix}})$ is calculated as a function of Δt and is given by

\[A(\Delta t) = \frac{N_{\text{unmix}} - N_{\text{mix}}}{N_{\text{unmix}} + N_{\text{mix}}} \]

\footnote{Throughout this paper, charge conjugate modes are implied.}
\[A(\Delta t) \approx (1 - 2w) \cos \Delta m_d \Delta t \otimes \mathcal{R}(\Delta t | \hat{a}), \]

where \(\hat{a} \) are the parameters of the \(\Delta t \) resolution function [2] and \(w \) is the probability of incorrect tagging (mistag fraction). A simultaneous unbinned likelihood fit to the \(\Delta t \) distribution of mixed and unmixed events in all tagging categories, assuming a common resolution function, allows the simultaneous determination of both \(\Delta m_d \) and the mistag fractions, \(w_i \). An empirical description of the \(\Delta t \) structure of the backgrounds is determined from a fit to background control samples taken from data, allowing for the following components: zero lifetime, non-zero lifetime with no mixing, non-zero lifetime with mixing.

4 Results and Conclusions

We measure the \(B^0 \) oscillation frequency to be \(\Delta m_d = 0.516 \pm 0.031 \) (stat) \(\pm 0.0018 \) (syst) \(\text{fs}^{-1} \) in the hadronic sample and \(\Delta m_d = 0.508 \pm 0.020 \) (stat) \(\pm 0.022 \) (syst) \(\text{fs}^{-1} \) in the \(D^+ \ell^+\nu \) sample. Figure 1 shows the asymmetry \(A(\Delta t) \) distributions for each sample with the fit result superimposed.

The systematic errors include uncertainty due to Monte Carlo statistics, \(\Delta t \) resolution function, background \(\Delta t \) shape, fraction of background events, \(B^0 \) lifetime, scale and the boost. In addition, we have looked at the uncertainty due to feeddown from \(B^- \to D^+ (\pi^\pm) \ell^- \nu \) in the semileptonic sample. The dominant contribution in the hadronic sample comes from the \(\Delta t \) resolution function, while the semileptonic sample is dominated by the uncertainty on the fraction of background events (see [2] for details).

Combining the two \(\Delta m_d \) results, we obtain the preliminary result:

\[\Delta m_d = 0.512 \pm 0.017 \text{(stat)} \pm 0.022 \text{(syst)} \text{fs}^{-1}. \]

The effective flavor tagging efficiency is given by \(Q = \sum_i \epsilon_i (1 - 2w_i)^2 \) where the sum is over tagging categories, each characterized by a tagging efficiency \(\epsilon_i \) and a mistag fraction \(w_i \). \(Q \) is related to the statistical significance of the measurement (1/\(\sigma_{\text{stat}}^2 \) \(\sim N_{\text{Br} \times Q} \)) and is found to be (27.9 \(\pm 1.6 \))%. The mistag fractions and the \(\Delta t \) resolution function parameters are used in the \(CP \) asymmetry measurement [3].
The results for Δm_d are consistent with previous measurements [4] and are of similar precision. They are also compatible with other BABAR measurements [5, 6]. Significant improvements are expected in the near future with the accumulation of more data and further systematic studies.

References

[1] BABAR Collaboration, B. Aubert et al., SLAC-PUB-8540, BABAR-CONF-00/01, contributed to ICHEP2000

