REFERENCES

3. See the rapporteur's talk by G. Weber in the Proceedings of the 1967 International Symposium on Electron and Photon Interactions at High Energies, Stanford (1967); also see the talk by R.E. Taylor in the same Proceedings and ref. 29.

7. G. Miller et al., Phys. Rev. D5, 528 (1972); also ref. 41.
28. The 6 and 10 degree inelastic e-p and e-d measurements were made by a collaboration of physicists from MIT and SLAC Group A. The members of that collaboration are the authors of ref. 8.

43. L.W. Mo and Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969).
44. Y.S. Tsai, in Proceedings of the International Conference on Nuclear Structure (1963), Stanford University Press (1964), p. 221; see also Y.S. Tsai, Stanford Linear Accelerator Center Report No. SLAC-PUB-848 (1971) and ref. 45.
53. R. Wilson, in Proceedings of the 1971 International Conference on Electron and Photon Interactions at High Energies, Cornell (1971); see also ref. 3.

56. C. Jordan, M. Mestayer, private communications.

60. W.B. Atwood and S. Stein, Private communications; see also ref. 61.

61. A form similar to that used by Atwood and Stein was first proposed by M. Breidenbach and J. Kuti, Phys. Lett. 41B, 345 (1972).

62. V. Rittenberg and H.R. Rubinstein, Phys. Lett. 35B, 501 (1972); see also ref. 76.

66. A quadrupole magnet in the 20 GeV spectrometer had been slightly askew during the 6 degree measurements of experiment C. A correction of \(\theta \) to account for this skewing
changed the scattering angle from 6.000 to 5.988 degrees, but the uncertainty in this procedure was too severe to permit use of the 6 degree elastic e-p cross sections in the calculation of the normalization factor. E. Bloom and J.S. Poucher, private communication.

69. R. Jaffe, private communication.
77. See ref. 17 and also Wu-Ki Tung, University of Chicago
Preprint No. EFI-75/14 (1975) and No. EFI-75/36 (1975).
78. T.D. Lee, Phys. Today 25, 23 (April 1972); also CERN 73-15
(1973).
79. For example the behavior of R_n at the position of the
elastic peak is expected from local duality arguments to
be $R_n + (4M^2/Q^2)(G_E^2/G_M^2) = 0$ if $G_E^2(Q^2) = 0$. See refs. 23
and 74. Similar arguments could be made for R_n at values
of W close to the resonance region.
80. J. Schwinger, "Source Theory Viewpoints in Deep Inelastic
Scattering", UCLA Preprint (undated).
82. C. Jordan, private communication.
84. E. Taylor, private communication.
"Comparison of 8 BeV Spectrometer Optics with TRANSPORT
86. J.I. Friedman, private communication.
87. R.A. Early, SLAC, private communication; see also R.A.
89. M.R. Sogard, Ph.D. Thesis, Massachusetts Institute of
Technology (June, 1970), unpublished.
90. L. Eyges, Phys. Rev. 76, 264 (1949); also Phys. Rev. 77,
81 (1950).

98. F.H. Renard, J. Tran Thanh and M. Bellac, Nouvo Cimento X38, 552 (1965); ibid, X38,565 (1965); ibid, X38, 1688 (1965).

