MEASUREMENT OF SEMI-LEPTONIC
DECAYS OF D MESONS TO ELECTRONS AT THE $\psi(3772)$

J.M. Feller, A.M. Litke, R.J. Madaras, M.T. Ronan,
A. Barbaro-Galtieri, J.M. Dorfan, R. Ely,
G.J. Feldman, A. Fong, B. Gobbi, G. Hanson,
J.A. Jaros, B.P. Kwan, P. Lecomte, D. Lüke, J.F. Martin,
T.S. Mast, D.H. Miller, S.I. Parker, M.L. Perl, I. Peruzzi,
M. Piccolo, T.P. Pun, P.A. Rapidis, R.R. Ross,
B. Sadoulet, T.G. Trippe, V. Vuillemin, D.E. Yount

Lawrence Berkeley Laboratory and Department of Physics
University of California
Berkeley, California 94720

Stanford Linear Accelerator Center and Department of Physics
Stanford University
Stanford, California 94305

Department of Physics and Astronomy
Northwestern University
Evanston, Illinois 60201

and

Department of Physics and Astronomy
University of Hawaii
Honolulu, Hawaii 96822

ABSTRACT

We have observed anomalous electron production in multiprong
events produced by e^+e^- annihilation at the $\psi(3772)$. For electron
momenta greater than 300 MeV/c we measure an anomalous electron
production cross section of 1.1 ± 0.3 nb. The measured spectrum
is consistent with that expected for semi-leptonic D decay. With
reasonable assumptions we find the branching ratio for D decay
to an electron plus additional particles, averaged over the neutral
and charged D, to be $(7.2 \pm 7.8)\%$.
The $\psi(3772)$, through its decay into $D\bar{D}$, is a source of charmed D mesons with well-defined kinematics. In a previous paper we used the $\psi(3772)$, produced in e^+e^- collisions, to determine D meson mass values and absolute branching ratios into hadronic decay channels. In this letter we report on a measurement of anomalous electron production in events with three or more detected charged particles (multiprong events) at the $\psi(3772)$. With these data we can study the semi-leptonic decay of the D meson in a reaction in which the D production mechanism is known and in which the center of mass energy ($E_{\text{c.m.}}$) is below the threshold for the production of any other type of charmed particle. We find production of anomalous electrons with a momentum spectrum that is consistent with that expected for semi-leptonic D decay, and calculate, under reasonable assumptions, the branching ratio for the decay of the D into an electron plus additional particles.

This experiment was performed at SPEAR with the SLAC-LBL magnetic detector. Two layers of lead glass counters for improved identification of electrons were added to the detector. The lead glass system (called the LGW) has been described elsewhere. The first layer consists of a set of active converters that are 3.3 radiation lengths (X_0) deep. The second layer is made up of a set of back block counters that are 10.5 X_0 thick. The LGW covers a solid angle of 0.69 sr. and is preceded by the 1X_0 aluminum magnet coil of the magnetic detector.

The LGW has been used to measure anomalous electron production in e^+e^- collisions at the $\psi(3772)$. For our data sample we require that
(1) a charged particle with momentum greater than 300 MeV/c enters
the LGW (for clean electron identification), and (2) two
or more additional charged particles are observed in the magnetic
detector. For this analysis we use only the multiprong events in order
to reduce contamination from QED and possibly heavy lepton events which
are expected to appear mainly in the two-prong data sample.

The identification of particles that enter the LGW is based on the
energy deposited in each of the two layers of lead glass counters and on
the measured time of flight \((\sigma_{\text{TOF}} = 0.35 \text{ nsec.})\). The energy deposition
criteria for identifying a particle as an electron candidate are:

(i) the total energy deposited in the LGW equals the particle
momentum as measured in the magnetic detector to within, typically,
35\% (the exact value is momentum dependent),

(ii) the energy deposited in the active converters exceeds a
momentum-dependent threshold (typically 150 MeV) that is substantially
greater than the 80 MeV expected for a noninteracting particle, and

(iii) more than 10\% of the energy of the particle is deposited
in the back block counters.

In addition, to reduce background from misidentification of kaons, protons,
and anti-protons, we require that the measured time of flight of the par-
ticle agrees to within one nanosecond with that expected for an electron.

Electron candidates in the LGW may arise from:

(a) hadrons which interact in the magnet coil or active converters
so as to satisfy the above criteria,

(b) conventional sources of electrons such as pion and kaon decay,
photon conversion, Compton scattering, and Dalitz decay of \(\pi^0\)'s and \(\eta\)'s, and
of charmed particles and heavy leptons. Sources (a) and (b) produce a background to the anomalous electron signal from source (c).

The background from photon conversion and Dalitz decay is reduced by eliminating electron candidates that have a small opening angle with a particle of opposite charge. Background from asymmetric e^+e^- pairs in which one member of a pair is unobserved because its momentum is below the threshold for efficient detection (about 100 MeV/c) will still be present. To determine this background, as well as the background due to hadron misidentification and pion and kaons decays, we assume there is no anomalous electron production at the $\psi(3095)$ and measure the background level there. In multihadronic events from $\psi(3095)$ decay we find that 1.5% of the particles in the LGW are identified as electrons at a momentum of 300 MeV/c. This fraction decreases with momentum to 0.4% at 1200 MeV/c. The background level at the $\psi(3772)$, expressed as a fraction of the particles in the LGW, should be similar. However we must take account of changes in, and additions to, the conventional sources of electrons.

The background level at the $\psi(3772)$ from converted photons and Dalitz decays might differ from that at the $\psi(3095)$ due to a change in the flux of photons and π^0's above 300 MeV. The difference in this background level was determined by measuring, at the two energies, conversion e^+e^- pairs with both particles detected, then extrapolating to the case with one particle undetected. We find this background level at the $\psi(3095)$ and $\psi(3772)$ to be the same to within 10% of the measured background level at the $\psi(3095)$. Changes in the background level due to pion and kaon decays and Compton scattering were calculated to be less than 5% of the measured background.

Two additional sources of background events at the $\psi(3772)$ must be con-
sidered: (a) $e^+e^- \rightarrow e^+e^-\gamma$ with the photon converting to an e^+e^- pair, and (b) production of $\psi(3684)$, by radiation from the initial e^+ or e^-, followed by the cascade decay to $\psi(3095)$ with $\psi(3095) \rightarrow e^+e^-$. These events are recognized on the basis of coplanarity, invariant mass, electron identification outside the LGW, and associated e^+e^- pair production, and have been removed from the data sample. In summary, we use the background level as measured at the $\psi(3095)$ and assign an error of $\pm 20\%$ to this background estimation for the $\psi(3772)$.

The electron identification efficiency ε has been measured using a sample of electrons from the reactions $e^+e^- \rightarrow e^+e^-\gamma$ and $e^+e^-e^+e^-$. The value of ε ranges from 60% at a momentum of 300 MeV/c up to 90% at a momentum of 1200 MeV/c.

In the $E_{\text{c.m.}}$ range about the peak of the $\psi(3772)$, $3.76 < E_{\text{c.m.}} < 3.79$ GeV, with a time-integrated luminosity of 1.34 pb$^{-1}$, we find 61 multiprong events with a particle identified as an electron candidate in the LGW. The expected number of background events due to hadron misidentification and electrons from conventional sources is 25 ± 5. We attribute the electron signal above background to a nonconventional source. Correcting the number of electron candidate events for background, solid angle and identification efficiency of the lead glass wall, and detection efficiency for the other prongs, we calculate the cross section for multiprong events with an anomalous electron of momentum greater than 300 MeV/c to be 1.1 ± 0.3 nb. This cross section, with data points from nearby energy regions, is plotted in Fig. 1 along with the excitation curve of the $\psi(3772)$ from Ref. 1. The anomalous electron signal appears to be correlated with the $\psi(3772)$. In Fig. 2 we show the corrected momentum electrons produced at the $\psi(3772)$.

to decay almost entirely into D\bar{D}.(2,6) This strongly suggests that the anomalous electron signal at the $\psi(3772)$ comes from the decay of the charmed D mesons. For comparison with the data, we also show in Fig. 2 the electron momentum spectra expected from D meson production in $e^+e^- \rightarrow \psi(3772) \rightarrow D\bar{D}$ with subsequent semi leptonic decay into $K^+\pi^-\nu_e$, $K^*\pi^-\nu_e$, or $\pi^0\nu_e$. (7) The data are consistent with the Cabibbo-favored decay modes $D \rightarrow Ke^+\nu_e$ (confidence level = 33%) or $K^*\pi^-\nu_e$ (CL = 13%), but less consistent with electron production entirely from the Cabibbo-suppressed mode $D \rightarrow \pi^0\nu_e$ (CL = 3%). The data are inconsistent with the purely leptonic decay $D \rightarrow e\nu_e$ which would produce a flat electron spectrum from about 810 MeV/c to 1080 MeV/c.

Assuming that (a) the anomalous electron signal at the $\psi(3772)$ comes entirely from D meson production and decay,(8) and (b) that the $\psi(3772)$ decays entirely into D\bar{D}, we can calculate the branching ratio $B_{D \rightarrow e}$ for D meson decay into an electron plus other particles, averaged over the neutral and charged D. (9) We write $B_{D \rightarrow e} = \sigma(e)/\sigma(D)$ where $\sigma(e)$ is the anomalous electron production cross section and $\sigma(D)$ is the cross section for D production. Under assumption (b) we have previously determined that $\sigma(D) = 20.6 \pm 4.3$ nb. (2) To evaluate $\sigma(e)$ we need to correct our measured anomalous electron cross section for (1) the part of the electron spectrum which falls below our cutoff value of 300 MeV/c, and (2) the fraction of D\bar{D} events which produce an electron and only a single additional charged particle. For an estimate of the correction factor required by (1) we use the electron decay spectrum for $D \rightarrow Ke^+\nu_e$ or $K^*\pi^-\nu_e$ as shown in Fig. 2. The correction factor required by (2) is calculated from the measured charged prong multiplicity distribution for D decay,(6)
and the multiplicity distribution for $D \rightarrow K_{e^+}e^-$ or $K^*_{e^+}e^-$. We find $B_{D \rightarrow e^+} = (7.1 \pm 2.7)\%$ or $(7.3 \pm 2.8)\%$ with the correction factors evaluated from the spectrum and charged prong multiplicity distribution for $D \rightarrow K_{e^+}e^-$ or $K^*_{e^+}e^-$. If another mode such as $K_{e^+}e^-$ (consistent with the measured spectrum) was dominant, the branching fraction obtained could differ but we estimate that the systematic error from this effect to be less than one-half the quoted errors.

In conclusion, we have observed anomalous electron production in multiprong final states produced by e^+e^- annihilation at the $\psi(3772)$. The electron momentum spectrum is consistent with the Cabibbo-favored semi-leptonic decays of the D meson. We find, under the stated assumptions, and with correction factors for efficiency based on $D \rightarrow K_{e^+}e^-$ or $K^*_{e^+}e^-$, a value for the branching ratio for D decay into an electron plus additional particles to be $(7.2 \pm 2.8)\%$

This work was supported primarily by the Department of Energy. Support for individuals came from the listed institutions plus the Deutsche Forschungsgemeinschaft (D.L.), the Laboratori Nazionali di Frascati dell' INFN (I.P. and M.P.), and the Swiss National Science Foundation (V.V.).
REFERENCES

(a). Present address: CERN, Geneva, Switzerland.

7. The electron momentum spectra are based on the calculations of A. Ali and T.C. Yang, Phys. Lett. 65B, 275(1976) and A. Ali, private communication. We have used the V-A form for the current which couples D to K^\ast.

8. If the $\psi(3772)$ is above the threshold for $\tau^+\tau^-$ production an anomalous electron signal may also arise from decays of the heavy lepton τ. From preliminary measurements on $e\mu$ events at the $\psi(3772)$ (see M.L. Perl, Proceedings of the 1977 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, 1977, to be published) we estimate that 6% of the anomalous electron events can come from this source. Taking account of $\tau^+\tau^-$ production would also lead to a
decrease in the value of $\sigma(D)$ by about 12%; the net effect is to raise our value for the branching ratio of D to electrons from 7.2% to 7.6%.

9. Assuming that the $\psi(3772)$ is a state of definite isospin (0 or 1) this average corresponds to $(0.56 \pm 0.03) B^{0}_{D} \rightarrow e^{-} + (0.44 \pm 0.03) B^{+}_{D} \rightarrow e^{-}$, as noted in reference 2.
FIGURE CAPTIONS

1. The e^+e^- annihilation cross section for multiprong events with an anomalous electron of momentum greater than 300 MeV/c vs. the center of mass energy. The curve is the $\psi(3772)$ line shape and charmed particle background from reference 1 and is normalized to the cross section at 3.774 GeV.

2. The momentum spectrum above 300 MeV/c for the anomalous electrons produced in multiprong events at the $\psi(3772)$. The curves show the electron spectra expected from D meson production in the reaction $e^+e^- \rightarrow D\bar{D}$ followed by the decay $D \rightarrow K_{e3}e$, $K^{*}e\nu_{e}$ or $\pi e\nu_{e}$, as noted in footnote 7. The curves are normalized above 300 MeV/c to the measured cross section.
Fig. 1
Fig. 2