Measurements of CP-violating Asymmetries in $B^0 \to K^0_s\pi^0$ Decays

Work supported in part by the Department of Energy contract DE-AC03-76SF00515.
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309.
We present a measurement of the time-dependent CP-violating (CPV) asymmetries in $B^0 \rightarrow K_S^0 \pi^0$ decays based on 124 million $\Upsilon(4S) \rightarrow B\bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. In a sample containing 122 ± 16 signal decays, we obtain the magnitude of the direct CPV asymmetry $C_{K_S^0\pi^0} = 0.40^{+0.27}_{-0.28} \pm 0.09$ and the magnitude of the CPV asymmetry in the interference between mixing and decay $S_{K_S^0\pi^0} = 0.48^{+0.38}_{-0.47} \pm 0.06$ where the first error is statistical and the second systematic.

PACS numbers: 13.25.Hw, 13.25.-k, 14.40.Nd

The BABAR [1] and Belle [2] collaborations recently reported observation of CP violation in B meson decays through measurements of the time-dependent CP-violating (CPV) asymmetry in B^0 decays into charmonium final states. In the framework of the Standard Model (SM), where CP violation is a consequence of the presence of a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [3], these measurements determine the parameter $\sin 2\beta$, with $\beta \equiv \arg(-V_{td}V_{ts}^*)/V_{ts}$. The consistency of the observed value of $\sin 2\beta$ with the Standard Model expectations provides strong evidence that the CKM mechanism is the dominant source of CP violation in the quark sector. A major goal of the experimental studies of B decays is to provide additional information to examine the viability of this conclusion and search for evidence of new physics (NP) in possible deviations from the SM. One avenue for the observation of NP is provided by CP violation studies of decays dominated by penguin loop transitions $b \rightarrow s\eta q$, $b \rightarrow s\eta s$ (with $q = \{d,s\}$) transitions [4, 5, 6]. While in the SM the time-dependent CPV asymmetries in these decays measure $\sin 2\beta$, additional radiative loop contributions from NP processes may alter this expectation. Presently, the B factory experiments have explored time-dependent CPV asymmetries in three such decays, which in the SM are dominated by the penguin $b \rightarrow s\eta s$ transition: $B^0 \rightarrow \eta' K_S^0$ [7, 8], $B^0 \rightarrow K^+K^-K_S^0$ [7], and $B^0 \rightarrow \phi K_S^0$ [7, 9]. The latter results hint at a possible deviation from the SM expectations [10] but are inconclusive.

In this letter, we present the first measurement of the time-dependent CPV asymmetry in the decay $B^0 \rightarrow K_S^0\pi^0$, which has a measured branching fraction $B(B^0 \rightarrow K_S^0\pi^0) = (11.9 \pm 1.5) \cdot 10^{-5}$ [10]. The CKM and color suppression of the tree-level $b \rightarrow s\eta u\pi$ transition leads to the expectation that this decay is dominated by a top quark mediated $b \rightarrow s\eta d$ penguin diagram, which carries a weak phase $\arg(V_{td}V_{ts}^*)$. If other contributions, such as the $b \rightarrow s\eta s$ tree amplitude, are ignored, the time-dependent CPV asymmetry is governed by $\sin 2\beta$. The deviation from $\sin 2\beta$ due to standard model contributions with a different weak phase is estimated to be at most 0.2 [11].

The results presented here are based on 124 million $\Upsilon(4S) \rightarrow B\bar{B}$ decays collected in 1999-2003 with the BABAR detector at the PEP-II e^+e^- collider, located at the Stanford Linear Accelerator Center. The BABAR detector, which is fully described in [12], provides charged particle tracking through a combination of a five-layer double-sided silicon micro-strip detector (SVT) and a 40-layer central drift chamber (DCH), both operating in a 1.5 T magnetic field in order to provide momentum measurements. Charged kaon and pion identification is achieved through measurements of particle energy-loss (dE/dx) in the tracking system and Cherenkov cone angle (θ_c) in a detector of internally reflected Cherenkov light (DIRC). A segmented CsI(Tl) electromagnetic calorimeter (EMC) provides photon detection and electron identification. Finally, the instrumented flux return (IFR) of the magnet allows discrimination of muons from pions.

We search for $B^0 \rightarrow K_S^0\pi^0$ decays in hadronic events, which are selected based on charged particle multiplicity and event topology [13]. We reconstruct $K_S^0 \rightarrow \pi^+\pi^-$ candidates from pairs of oppositely charged tracks. The two-track combination must form a vertex with $\pi^+\pi^-$ invariant mass within 3.5σ of the nominal K_S^0 mass [14] and reconstructed proper lifetime greater than five times its uncertainty. We form $\pi^0 \rightarrow \gamma\gamma$ candidates from pairs of photon candidates in the EMC that are isolated from any charged tracks, carry a minimum energy of 30 MeV, and possess the expected lateral shower shapes. Finally, we construct $B^0 \rightarrow K_S^0\pi^0\pi^0$ candidates by combining K_S^0 and $\pi^0\pi^0$ candidates in the event. For each B candidate two nearly independent kinematic variables are computed, namely the energy-substituted mass $m_{ES} = \sqrt{(s/2 + p_B)^2 + E_B^2}$ and the energy difference $\Delta E = E_B - \sqrt{s}/2$. Here, (E_i, p_i) is the four-vector of the initial e^+e^- system, $\sqrt{s} = \sqrt{E^2 + p^2}$ is the center-of-mass energy, p_B is the reconstructed momentum of the B^0 candidate and E_B is its energy calculated in the e^+e^- rest frame. For signal decays, the m_{ES} distribution peaks near the B^0 mass with a resolution of ~ 3.1 MeV/c^2 and the ΔE distribution peaks near zero with a resolution of ~ 40 MeV. Both the m_{ES} and the ΔE distribution exhibit a low-side tail from energy leakage out of the EMC. We select candidates within the window $5.2 < m_{ES} < 5.29$ GeV/c^2 and $-150 < \Delta E < 150$ MeV, which includes the signal peak and a "sideband" region for background characterization. For the 1.7% of events with more than one candidate we select the combination with the smallest $\chi^2 = \sum_{i=0} (m_i - m'_i)^2 / \sigma_{m_i}^2$, where m_i (m'_i) is the measured (nominal) mass and σ_{m_i} is the estimated uncertainty on the mass of particle i. For each $B^0 \rightarrow K_S^0\pi^0\pi^0$ candidate we examine the re-
remaining tracks and neutral candidates in the event to determine if the other B meson, \(B_{\text{tag}} \), decayed as a \(B^0 \) or a \(\bar{B}^0 \) (flavor tag). Time-dependent CPV asymmetries are determined by reconstructing the distribution of the difference of the proper decay times, \(\Delta t \equiv t_{\text{CP}} - t_{\text{tag}} \), where the \(t_{\text{CP}} \) refers to the signal to the \(B^0 \) and \(t_{\text{tag}} \) to the other \(B \). At the \(T(4S) \) resonance, the \(\Delta t \) distribution follows

\[
\mathcal{P}_{\Delta t}^{B^0}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\pi} \times \left[1 \pm (S_f \sin(|\Delta m_d\Delta t| - C_f \cos(|\Delta m_d\Delta t|)) \right],
\]

where the upper (lower) sign corresponds to \(B^0 \) decaying as \((\bar{B}^0) \), \(\tau \) is the \(B^0 \) lifetime averaged over the two mass eigenstates, \(\Delta m_d \) is the mixing frequency, \(C_f \) is the magnitude of direct CPV in the decay to final state \(f \) and \(S \) the magnitude of CPV in the interference between mixing and decay. For the case of pure penguin dominance, we expect \(S_{K_S^0\pi^0} = 2\beta \), and \(C_{K_S^0\pi^0} = 0 \).

We extract the CPV parameters from an unbinned maximum-likelihood fit to kinematic, event shape, flavor tag, and time structure variables. We verified that the selected observables are sufficiently independent that we can construct the likelihood from the product of one dimensional probability density functions (PDFs). The PDFs for signal events are parameterized from either more copious fully-reconstructed \(B \) decays in data or from simulated samples. For background PDFs we select the functional form from data in the sideband regions of the other observables where backgrounds dominate. We include these regions in the fitted sample and simultaneously extract the parameters of the background PDFs along with the CPV measurements.

The sample of \(B^0 \to K_S^0\pi^0 \) candidates is dominated by random \(K_S^0\pi^0 \) combinations from \(e^+e^- \to q\bar{q} (q = \{u,d,s,c\}) \) fragmentation. Monte Carlo studies show that contributions from other \(B \) meson decays can be neglected. We exploit topological observables to discriminate the jet-like \(e^+e^- \to q\bar{q} \) events from the more uniformly distributed \(BB \) events. In the \(T(4S) \) rest frame we compute the angle \(\theta_q \) between the sphericity axis and that of the remaining particles in the event. While \(|\cos \theta_q| \) is highly peaked near 1 for \(e^+e^- \to q\bar{q} \), it is nearly uniformly distributed for \(BB \). We require \(|\cos \theta_q| < 0.8 \), eliminating 83% of the background. In addition, we include in the fit a Fisher discriminant variable, which is defined as \(F = 0.53 - 0.60L_3 + 1.27L_2 \), where \(L_i = \sum_i |p_i^*| |\cos \theta_i^*| \), \(p_i^* \) is the momentum of particle \(i \) and \(\theta_i^* \) is the angle between \(p_i^* \) and the sphericity axis of the \(B^0 \) candidate.

We use a neural network (NN) to determine the flavor of the \(B_{\text{tag}} \) meson from kinematic and particle identification information [16]. Each event is assigned to one of five mutually exclusive tagging categories, designed to combine flavor tags with similar performance and \(\Delta t \) resolution. We parameterize the performance of this algorithm in a data sample \((B_{\text{data}}) \) of fully reconstructed \(B^0 \to D^{(*)}\pi^+/\rho^+/\pi^0/\pi^0/\pi^+ \) decays. The average effective tagging efficiency obtained from this sample is \(\eta = \sum_c \epsilon_{\bar{S}}(1 - 2w^c)^2 = 0.288 \pm 0.005 \), where \(\epsilon_{\bar{S}} \) and \(w^c \) are the efficiencies and mistag probabilities, respectively, for events tagged in category \(c \). For the background the fraction of events \((\epsilon_{\bar{S}})\) and the asymmetry in the rate of \(B^0 \) versus \(\bar{B}^0 \) tags in each tagging category are extracted from the fit to the data.

We compute the proper time difference \(\Delta t \) from the known boost of the \(e^+e^- \) system and the measured \(\Delta z = z_{\text{CP}} - z_{\text{tag}} \), the difference of the reconstructed decay vertex positions of the \(B^0 \to K_S^0\pi^0 \) and \(B_{\text{tag}} \) candidate along the boost direction \(z \). A description of the inclusive reconstruction of the \(B_{\text{tag}} \) vertex is given in [13]. For the \(B^0 \to K_S^0\pi^0 \) decay, where no charged particles are present at the decay vertex, we exploit the fact that the flight distance of the \(B \) meson transverse to the beam direction \((\sim 30 \mu m)\) is small compared to the flight length along the beam \((\sim 260 \mu m)\). We then determine the decay point from the intersection of the \(K_S^0 \) trajectory with the interaction region by constraining the \(B \) vertex to the interaction point (IP) in the transverse plane. The position and size of the interaction region are determined on a run-by-run basis from the spatial distribution of vertices from two-track events. The uncertainty in the IP position, which follows from the size of the interaction region \((\sim 200 \mu m \) horizontal and \(4 \mu m \) vertical), is combined with the RMS of the transverse \(B \) flight length distribution to assign an uncertainty to the IP constraint.

Simulation studies indicate that the vertexing procedure provides an unbiased estimate of \(\Delta z_{\text{CP}} \). The per-event estimate of the \(\Delta t \) error reflects the strong dependence of the \(\Delta z_{\text{CP}} \) resolution on the \(K_S^0 \) flight direction and the number of SVT layers traversed by its decay daughters. For the 37% of events where both tracks include at least one hit in the inner three SVT layers (at radii from 3.2 cm to 5.4 cm), the mean \(\Delta t \) resolution is comparable to that of decays for which the vertex is directly reconstructed from charged particles originating at the \(B \) decay point [13]. If both tracks have hits in the outer two SVT layers (at radii 9.1 cm to 14.4 cm) but one of the tracks has no hits in the inner three layers \((\sim 27\% \) of the events), the resolution is nearly two times worse. The remaining events provide poor \(\Delta t \) measurements. For these events and for events with \(\sigma_{\Delta t} > 2.5 \) ps or \(|\Delta t| < 20 \) ps, we do not include \(\Delta t \) information in the fit. However, we account for the contribution of these events in the measurement of \(C_{K_S^0\pi^0} \).

We obtain the PDF for the time-dependence of signal decays from the convolution of Eq. 1 with a resolution function \(R(\delta t \equiv \Delta t - \Delta t_{\text{true}}, \sigma_{\Delta t}) \). The resolution function is parameterized as the sum of a ‘core’ and a ‘tail’ Gaussian, each with a width and mean proportional to the reconstructed \(\sigma_{\Delta t} \), and a third Gaussian centered at zero with a fixed width of 8 ps [13]. We have veri-
fied in simulation that the parameters of $R(\delta t, \sigma_{\Delta t})$ for $B^0 \to K^0_s\pi^0$ decays are similar to those obtained from the B_{flav} sample, even though the distributions of $\sigma_{\Delta t}$ differ considerably. Therefore, we extract these parameters from a fit to the B_{flav} sample. We find that the Δt distribution of background candidates is well described by a delta function convolved with a resolution function with the same functional form as used for signal events. The parameters of the background function are determined in the fit.

To extract the CPV asymmetries we maximize the logarithm of the likelihood function

$$\mathcal{L}(S_f, C_f, N_S, N_B, f_S, f_B, \bar{\alpha}) = \frac{e^{-(N_S+N_B)}}{(N_S+N_B)!} \times \prod_{i \in \mathbb{w}/\Delta t} \left[N_S f_S \epsilon_S^p \mathcal{P}_S(x; \bar{y}_i; S_f, C_f) + N_B f_B \epsilon_B^p \mathcal{P}_B(x; \bar{y}_i; \bar{\alpha}) \right] \times \prod_{i \in \mathbb{w}/0\Delta t} \left[N_S (1-f_S) \epsilon_S^p \mathcal{P}_S(x; \bar{y}_i; C_f) + N_B (1-f_B) \epsilon_B^p \mathcal{P}_B(x; \bar{y}_i; \bar{\alpha}) \right],$$

where the second (third) factor on the right-hand side is the contribution from events with (without) Δt information. The probabilities \mathcal{P}_S and \mathcal{P}_B are products of PDFs for signal (S) and background (B) hypotheses evaluated for the measurements $x_i = \{m_{\text{ES}}, \Delta E, \mathcal{F}, \text{tag}, \text{tagging category}\}$ and $y_i = \{\Delta t, \sigma_{\Delta t}\}$. Along with the CPV asymmetries S_f and C_f, the fit extracts the yields N_S and N_B, the fractions of events with Δt information f_S and f_B, and the parameters $\bar{\alpha}$ which describe the background PDFs.

Fitting the data sample of 4179 $B^0 \to K^0_s\pi^0$ candidates, we find $N_S = 122 \pm 16$ signal decays with $S_{K^0_s\pi^0} = 0.48^{\pm0.10}_{\pm0.09} \pm 0.06$ and $C_{K^0_s\pi^0} = 0.40^{\pm0.38}_{\pm0.27} \pm 0.09$, where the uncertainties are statistical and systematic, respectively. The estimated number of signal decays is consistent with our measurement of the branching fraction [17]. The result for $C_{K^0_s\pi^0}$ is consistent with a fit that does not employ Δt information. Fixing $C_{K^0_s\pi^0} = 0$ we obtain $S_{K^0_s\pi^0} = 0.41^{+0.41}_{-0.48} \pm 0.06$. The evaluation of the systematic uncertainties is described below.

Figure 1 shows the m_{ES} distributions for a signal-enhanced sample. The event selection is based on a likelihood ratio $R = \mathcal{P}_S/(\mathcal{P}_B + \mathcal{P}_S)$ calculated without the displayed observable. The dashed and solid curves indicate background and signal-plus-background contributions, respectively, as obtained from the fit, but corrected for the selection on R. Figure 2 shows distributions of Δt for B^0- and \bar{B}^0-tagged events, and the asymmetry $A_{K^0_s\pi^0}(\Delta t) = [N_{B^0} - N_{\bar{B}^0}] / [N_{B^0} + N_{\bar{B}^0}]$ as a function of Δt, also for a signal-enhanced sample.

In order to investigate possible biases introduced in the CPV measurements by the IP-constrained vertexing technique, we examine $B^0 \to J/\psi K^0_s$ decays in data, where $J/\psi \to \mu^+\mu^-$ and $J/\psi \to e^+e^-$. In these events we determine Δt in two ways: by fully reconstructing the B^0 decay vertex using the trajectories of charged daughters of the J/ψ and the K^0_s mesons, or by neglecting the J/ψ contribution to the decay vertex and using the IP constraint and the K^0_s trajectory only. This study shows that within statistical uncertainties the IP-constrained Δt measurement is unbiased with respect to the more established technique and that the obtained values of $S_{J/\psi K^0_s}$ and $C_{J/\psi K^0_s}$ are consistent. A similar study of $B^\pm \to K^{0 \pm}\pi^0$ events, where the π^0 contribution to the decay vertex has been replaced by the IP constraint, yields $S_{K^{0 \pm} \pi^0} = 0.13 \pm 0.19$ and $C_{K^{0 \pm} \pi^0} = 0.06 \pm 0.11$, which is consistent with the expectation $S_{K^{0 \pm} \pi^0} = 0$.

![FIG. 1: Distribution of m_{ES} for events enhanced in signal decays. The dashed and solid curves represent the background and signal-plus-background contributions, respectively, as obtained from the maximum likelihood fit.](image)

![FIG. 2: Distributions of Δt for events enhanced in signal decays with B_{tag} tagged as (a) B^0 or (b) \bar{B}^0, and (c) the asymmetry $A_{K^0_s\pi^0}(\Delta t)$. The dashed and solid curves represent the fitted background and signal-plus-background contributions, respectively, as obtained from the maximum likelihood fit. The asymmetry projection corresponds to approximately 36 signal and 25 background events.](image)
and our previous measurement of the charge asymmetry [17]. We also find that the B^0 lifetime measured in $B^0 \rightarrow K^0_S \pi^0$ decays and in IP-constrained $B^0 \rightarrow J/\psi K^0_S$ decays agrees with the world average [14].

To quantify possible systematic effects we examine large samples of simulated $B^0 \rightarrow K^0_S \pi^0$ and $B^0 \rightarrow J/\psi K^0_S$ decays. We employ the difference in resolution function parameters extracted from these samples to evaluate uncertainties due to the use of the resolution function R extracted from the B_{flav} sample. We assign a systematic uncertainty of 0.03 on $S_{K^0_S \pi^0}$ and 0.02 on $C_{K^0_S \pi^0}$ due to the uncertainty in R. We compare fits to a large sample of simulated nominal and IP-constrained $B^0 \rightarrow J/\psi K^0_S$ events to account for any potential bias due to the vertexing technique. This latter study yields the difference $\delta S_{J/\psi K^0_S} = 0.04$, which we assign as the dominant systematic uncertainty on $S_{K^0_S \pi^0}$. We include a systematic uncertainty of 0.03 on $S_{K^0_S \pi^0}$ and 0.01 on $C_{K^0_S \pi^0}$ to account for a possible misalignment of the SVT. We consider large variations of the IP position and resolution, which we find to have negligible impact. We assign a systematic uncertainty of 0.09 to $C_{K^0_S \pi^0}$ due to possible asymmetries in the rate of B^0 versus \bar{B}^0 tags in background events. Finally, we include a systematic uncertainty of 0.02 on both $S_{K^0_S \pi^0}$ and $C_{K^0_S \pi^0}$ to account for imperfect knowledge of the PDFs used in the fit.

In summary, we have performed a measurement of the time-dependent CPV asymmetries in $B^0 \rightarrow K^0_S \pi^0$. These results supersede our previous measurement of $C_{K^0_S \pi^0}$ [17], which only relied on time-integrated observables, and introduce the first measurement of $S_{K^0_S \pi^0}$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.