A SOLID STATE DC POLARITY REVERSES SWITCH

M. M. Berndt and C. Guracar
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

In applications where it is necessary to rapidly reverse the polarity of a dc magnet power supply, a mechanical reversing switch is used rather than reversing links or cables. If in addition to rapid reversing the application calls for frequent reversals, then the wear and tear of a mechanical switch will limit its size expectancy, and the advantages of an electronic polarity reversing switch become more attractive, in spite of the higher initial cost.

A typical reversing switch is shown in Fig. 1a. In each polarity only opposite arms of the bridge conduct at any time: A and B for one direction, A' and B' for the other. In an electronic reversing switch (Fig. 1b) the mechanical contacts in the arms of the bridge are replaced by thyristors or transistors with somewhat different properties depending on which device is used. Transistors require a continuous signal at the base for the "closed" condition, are easy to "turn off", but can handle only limited voltage and current. On the other hand, thyristors stay "closed" after they have been triggered, can only be "turned off" by reducing their current below some minimum holding value, and can handle relatively large voltage and current.

Two problems seem most important in the design and operation of a thyristor reversing switch. One is to assure complete turnoff of the conducting pair of thyristors before or at the time the opposite pair is turned on. The other problem results from the energy stored in a typical magnet and on the thyristors. The circuit used is shown in Fig. 4, and has the following operating features:

a) Continuous gate pulses are provided to the appropriate thyristors for each direction of the load current. This is necessary since, as will be indicated later, no load current exists at the time the actual reversal is accomplished. Also, the application may require that the current be reduced to zero without reversing or extinguishing the conducting thyristors.

b) If a reverse command has been given, the circuit waits until the load current is reduced below the preset level, at which time the gate pulses to the previously conducting thyristors are interrupted. A current pulse that will oppose the existing power supply current is then applied through a transformer, thus assuring complete turnoff of the conducting thyristors.

c) The reverse command circuit is reset at the same time that the current turnoff pulse is applied, and after a small time delay gate pulses are applied to the other thyristor pair for the new direction of the load current.

Description of the Circuit

Thyristors SCR1 and 2, SCR1' and 2' of Fig. 4 are the contacts of the reversing switch. The thyristors chosen are rated for 1000 A dc continuous current and 400 V peak reverse and forward voltage. Gate signals in the form of a continuous pulse train to either SCR1 and 2 or SCR1' and 2' are generated by a pair of blocking oscillators (Q6 and Q5, or Q5 and Q4) and are applied to the gates through pulse transformers (T4 or T5).

A transducer (DCT) in the load lines monitors the magnet current. The resistance in the transducer output is large since the circuit must be active only at load currents up to about 30 A. The output of the transducer is clamped to 5 V dc, and is summed at the input of A1 with an external 5 V dc signal supplied through the polarity reversal command switch S and a small thyristor SCR3.

When a polarity reversal is desired, the external 5 V dc signal is removed by a momentary interruption of the switch S, which turns off SCR3. As the load current and consequently also the transducer output signal is reduced to a level predetermined by the setting of the 100 ohm potentiometer, the change is sensed by a level detector circuit formed by A1 and A2. The output of the circuit immediately cuts off the operating blocking oscillator, thus interrupting gate pulses to the conducting thyristors in the bridge.

One second after the level detector has switched, a timing circuit formed by Q9 and Q10 generates a pulse, which after amplification by Q11 triggers SCH4, thus dumping the stored energy of the capacitor through T1 into the reversing switch power lines. The direction of the current pulse is such that it temporarily opposes any current that still exists in the thyristors and causes them to turn off. At the same time the small thyristor SCR3 is also triggered, applying 5 V dc to the level detector circuit and resetting it.

Two seconds after the level detector has switched, a timing circuit formed by Q1 and Q2 triggers a flip-flop (Q3 and Q4). The other blocking oscillator is then turned on, and the reversing cycle is completed.

The size of transformer T1 was determined empirically. A core of about 5 in² was sufficient, wound with a single turn from the switch power lines, and five turns from the dump

*Work supported by the U. S. Atomic Energy Commission.

(Presented at the 1971 Particle Accelerator Conference, Chicago, Illinois, March 1-3, 1971.)
capacitor source. The transformer has a gap of about 10 mils to prevent saturation at low dc currents where it must be active. For successful turnoff of the thyristors a few microfarads C' may be necessary across the load terminals. The duration of the two timing circuits was arbitrary and could possibly be shortened.

The four switching thyristors have RC networks connected across them, not shown in Fig. 4. They were added to prevent spurious triggering that could be caused if the allowable rate of rise of anode voltage were exceeded; the networks also aid in thyristor turnon during startup. The values of R and C depend on the thyristor chosen; about 10 ohms and 2 microfarads were adequate for this application.

The circuit can be simplified if the turnoff pulse supplied through T1 is not required. Since the holding current of thyristors may be as low as a few milliamperes, the turnoff pulse circuit can only be eliminated if the power supply current can in truth be reduced to zero, and if the time required for the current decay is not excessive.

Although other control schemes could be devised, for this application the choice of a continuous trigger and of the reset thyristor SCR3 was deliberate. It allows resetting and maintaining the polarity of the switch even if the current is reduced to zero, and permits reversing only at no load current when switch S is actuated. Continuous indication of switch polarity can be obtained by monitoring the blocking oscillators.

With currently available thyristors rated at about 1500 A do, a somewhat larger switch than described here could be built. For still higher currents, it would be necessary to parallel thyristors for dc operation. This can be done, but requires the use of matched thyristors and of appropriate derating factors.

Tests and Results

The circuit was built and tested with a small magnet which was turned off and reversed when operating at about 20 A. It was also successfully tested with a 0.4 henry 5 A choke used as the load. Field operational data has not yet been obtained, but the switch is being installed for use with a power supply.

![FIG. 1](image1.png)

(a) Mechanical reversing switch.
(b) Electronic reversing switch.

![FIG. 2](image2.png)

Basic current-fed inverter circuit used as a reversing switch.

![FIG. 3](image3.png)

A bipolar power supply using back to back thyristors.

![FIG. 4](image4.png)

Schematic diagram of thyristor reversing switch.