COMPARISON OF THE CONSTANT GRADIENT
AND
UNIFORM ACCELERATOR STRUCTURES

By
R. B. Neal

Technical Report
A.E.C. Contract AT(04-3)-363
M Report No. 259
March 1961

W. W. HANSEN LABORATORIES OF PHYSICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Proprietary data of Stanford University and/or U. S. Atomic Energy Commission. Recipient hereby agrees not to publish the within information without specific permission of Stanford University.

Nothing in this permission shall be construed as a warranty or representation by or on behalf of Stanford University and/or the United States Government that exercise of the permission or rights herein granted will not infringe patent, copyright, trademark or other rights of third parties nor shall Stanford University and/or the Government bear any liability or responsibility for any such infringement.

No licenses or other rights under patents or with respect to trademarks or trade names are herein granted by implication, estoppel or otherwise and no licenses or other rights respecting trade secrets, unpatented processes, ideas or devices or to use any copyrighted material are herein granted by implication, estoppel or otherwise except to the extent revealed by the technical data and information, the subject of the permission herein granted.
COMPARISON OF THE CONSTANT GRADIENT
AND
UNIFORM ACCELERATOR STRUCTURES

By
R. B. Neal

Technical Report
A.E.C. Contract AT(04-3)-363
M Report No. 259
March 1961

W. W. Hansen Laboratories of Physics
Stanford University
Stanford, California
TABLE OF CONTENTS

I. Introduction .. 1
II. Ratio of peak to average electric field 1
III. RF power dissipation per unit length 3
IV. Electron energy and beam loading derivative, \(\frac{dV}{di} \) 5
V. Maximum conversion efficiency 5
VI. Electron energy in terms of \(\eta_{\text{max}} \) 9
VII. Group velocity and filling time 9
VIII. Stored energy .. 11
IX. Frequency sensitivity 12
X. Examples .. 14
XI. Conclusions ... 17

LIST OF FIGURES

1. Ratios of peak to average axial electric field strengths in uniform and constant gradient accelerator structures vs \(\tau \) .. 2
2. Ratio of power losses at input and output ends of accelerator section for uniform and constant gradient structures vs \(\tau \) .. 4
3. Unloaded beam energies for uniform and constant gradient accelerator structures vs \(\tau \) 6
4. Beam loading derivatives for uniform and constant gradient accelerator structures vs \(\tau \) 7
5. Maximum beam conversion efficiencies and corresponding values of peak beam current for uniform and constant gradient accelerators vs \(\tau \) 10
6. Frequency sensitivities of uniform and constant gradient vs \(\tau \) 15
I. INTRODUCTION

The constant gradient and the uniform accelerator structure have previously been compared\(^1\),\(^2\) from several points of view. In this report, the earlier results will be summarized and the structures will be further compared on the basis of frequency sensitivity and beam loading derivative \((dV/di)\). The general case resulting in constant gradient at any electron beam current was considered in reference 2. In this report, we will confine attention to the particular case where the constant gradient condition is obtained when \(i = 0\). This is probably the most useful case in practice.

II. RATIO OF PEAK TO AVERAGE ELECTRIC FIELDS

The ratio of peak to average axial electric field strength is unity in the c.g.\(^3\) accelerator while it may be as high as 1.76\(^4\) in the uniform accelerator. Thus, it is clear that the c.g. accelerator can produce electron energies up to 1.76 times as high as an optimized uniform structure when both are operating at the breakdown limit of electric field strength. The relative advantage of the c.g. accelerator in achieving high average gradients without breakdown depends upon the value of the attenuation parameter,\(^5\) \(\tau = (\omega t_p/2Q)\). This is shown in Fig. 1 where the ratio of peak to average electric fields = \(E_0 \ell /V_0\) is plotted versus \(\tau\). The equations of these curves are:

3. The abbreviation "c.g." will be used for "constant gradient" in the remainder of this report. The sub-script "U" is used in those equations pertaining to the uniform structure.
4. This magnitude corresponds to a value of the rf attenuation constant \(\tau = 1.26\) nepers which gives maximum no-load energy in the uniform accelerator structure.
5. This parameter has been called \(I \ell\) in several previous reports, where \(I\) is the rf attenuation in nepers per unit length and \(\ell\) is the length of the accelerator section. The dependence of \(\tau\) upon filling time \(t_p\) is emphasized in this report and in ref. 2 to call attention to the importance of comparing the c.g. and uniform structures at the same value of \(\tau\) for each. For equal \(\tau\), the two structures will have the same filling times, the same stored energies, and the same ratios of input to output rf powers.
FIG. 1—Ratios of peak to average axial electric field strengths in uniform and constant gradient accelerator structures vs τ.

$\frac{E_0 \ell}{v_0}$

$\tau = \omega t_R / 2Q$
\[
\frac{E_0 l}{V_0} \bigg|_U = \frac{\tau}{1 - e^{-\tau}} \tag{1}
\]

\[
\frac{E_0 l}{V_0} \bigg|_{\text{c.g.}} = 1 \tag{2}
\]

III. RF POWER DISSIPATION PER UNIT LENGTH

The rf power dissipated per unit length in the walls of the uniform structure is given by:

\[
\frac{dP}{dz} \bigg|_U = \frac{2\tau P_0}{\ell} e^{-2\tau z/\ell} \tag{3}
\]

so that the ratio of power loss at the input end to that at the output end of an accelerator section is given by

\[
\frac{dP}{dz} \bigg|_{z=0} = e^{2\tau} \tag{4}
\]

\[
\frac{dP}{dz} \bigg|_{z=\ell} = e
\]

Thus, this ratio may be as high as 12.4. On the other hand, the power dissipated per unit length in the c.g. accelerator is constant over the entire length of the structure. This means that the temperature rise in c.g. structure can be perfectly compensated by a simple frequency adjustment of the rf power source, thus preventing phase shift between the electrons and the wave. Such an adjustment will usually be imperfect in the uniform structure case leading to phase shift and loss of beam energy. The power loss ratios for the two structures are shown in Fig. 2 vs \(\tau \).

6. This is derived in a number of reports. See, for example, R. B. Neal, J. Appl. Phys. 29, 1019 (1958).
FIG. 2--Ratio of power losses at input and output ends of accelerator section for uniform and constant gradient structures vs τ.

$$\frac{\frac{dP}{dz}}{z=0} \quad \frac{\frac{dP}{dz}}{z=L}$$

$$\tau = \omega t_a/2Q$$
IV. ELECTRON ENERGY AND BEAM LOADING DERIVATIVE, dV/di

For the uniform accelerator structure, the electron energy is given by

$$V_U = \left(2\tau\right)^{1/2} \frac{1 - e^{-\tau}}{\tau} \left[P_0^2 r\right]^{1/2} - \frac{ir\ell}{2} \left[1 - \frac{1 - e^{-\tau}}{\tau}\right]. \quad (5)$$

Thus, the beam loading derivative is

$$\frac{dV}{di}_{U} = -\frac{ir\ell}{2} \left[1 - \frac{1 - e^{-\tau}}{\tau}\right]. \quad (6)$$

Similarly, the electron energy for the constant gradient structure is given by

$$V_{c.g.} = \left[1 - e^{-2\tau}\right]^{1/2} \left[P_0^2 r\right]^{1/2} - \frac{ir\ell}{2} \left[1 - \frac{2\tau e^{-2\tau}}{1 - e^{-2\tau}}\right] \quad (7)$$

so that the beam loading derivative is

$$\frac{dV}{di}_{c.g.} = -\frac{ir\ell}{2} \left[1 - \frac{2\tau e^{-2\tau}}{1 - e^{-2\tau}}\right]. \quad (8)$$

The no-load energies, V_0, for the two structures are plotted versus τ in Fig. 3. The beam loading derivatives are shown in Fig. 4. For a given value of τ, the constant gradient structure has a higher no-load energy and a lower beam loading derivative than the uniform structure. Thus, the c.g. structure has greater relative energy advantage in the loaded case than in the unloaded case.

V. MAXIMUM CONVERSION EFFICIENCY

The conversion efficiency η is defined as the ratio of power in the electron beam to the input rf power. Thus,

$$\eta = \frac{V_1}{P_0} \quad \text{or} \quad \eta = \frac{P_1}{P_0} \quad \text{or} \quad \eta = \frac{V_1}{P_0}$$

\[\text{Equation 9}\]
FIG. 3--Unloaded beam energies for uniform and constant gradient accelerator structures vs τ.
FIG. 4--Beam loading derivatives for uniform and constant gradient accelerator structures vs τ.
For the uniform accelerator the conversion efficiency is given by

\[\eta_U = \left(\frac{2r\ell}{\tau P_0} \right)^{1/2} \left[\frac{1 - e^{-\tau}}{\tau} - \frac{1}{2} \left(\frac{2r\ell}{\tau P_0} \right)^{1/2} \left(1 - \frac{1 - e^{-\tau}}{\tau} \right) \right]. \quad (10) \]

Differentiating Eq. (10) with respect to \(i \), we find the current \(i \) which gives maximum \(\eta \) to be

\[i_{\eta_{\text{max}} (U)} = \frac{\left(\frac{\tau P_0}{2r\ell} \right)^{1/2} \left(1 - e^{-\tau} \right)}{\tau - (1 - e^{-\tau})}. \quad (11) \]

Inserting the value of \(i \) from Eq. (11) into Eq. (10) we obtain for the maximum conversion efficiency:

\[\eta_{\text{max}} (U) = \frac{1}{2} \frac{(1 - e^{-\tau})^2}{\tau - (1 - e^{-\tau})}. \quad (12) \]

Similarly, the conversion efficiency for the c.g. accelerator is given by

\[\eta_{\text{c.g.}} = \left(\frac{r\ell}{P_0} \right)^{1/2} \left(1 - e^{-2\tau} \right)^{1/2} \left[1 - \frac{1}{2} \left(\frac{r\ell}{P_0} \right)^{1/2} \left(\frac{1 - e^{-2\tau}}{\tau} - 2e^{-2\tau} \right) \right]. \quad (13) \]

This is maximum when \(i \) is given by

\[i_{\eta_{\text{max}} (\text{c.g.})} = \left(\frac{P_0}{r\ell} \right)^{1/2} \frac{(1 - e^{-2\tau})^{3/2}}{\left(1 - e^{-2\tau} \right) - 2e^{-2\tau}}. \quad (14) \]

Inserting Eq. (14) in Eq. (13) we obtain for the maximum conversion efficiency

\[\eta_{\text{max}} (\text{c.g.}) = \frac{1}{2} \frac{(1 - e^{-2\tau})^2}{\left(1 - e^{-2\tau} \right) - 2e^{-2\tau}}. \quad (15) \]
The maximum conversion efficiencies for the two structures and the corresponding values of η_{max} are shown in Fig. 5 vs τ.

VI. ELECTRON ENERGY IN TERMS OF η_{max}

From Eqs. (5) and (11) and Eqs. (7) and (14) we find that the electron energies from both the uniform and the c.g. accelerators can be written

$$V = V_0 \left(1 - \frac{1}{2} \frac{1}{\eta_{\text{max}}} \right)$$

where V_0 is the no-load energy given by the first term on the right in Eq. (5) for the uniform accelerator, and the first term in the right in Eq. (7) for the c.g. accelerator and η_{max} is given by Eqs. (11) and (14) for the uniform and c.g. structures, respectively.

From Eq. (16) it is clear that in each of the two structures, when the beam loading is sufficient to result in maximum conversion efficiency, the electron energy is reduced to one-half of the no-load energy.

VII. GROUP VELOCITY AND FILLING TIME

The group velocity v_g is a constant over the entire length of the uniform accelerator structure. Thus, the filling time t_F is given by

$$t_F (U) = \frac{l}{v_g} = \frac{20}{\omega} \tau$$

where l is the length of the accelerator section. τ is the rf attenuation over the length of the section and is therefore equal to

$$\tau_U = \frac{1}{2} \ln \left(\frac{P_0}{P_f} \right)$$

so that the filling time may also be written
FIG. 5—Maximum beam conversion efficiencies and corresponding values of peak beam current for uniform and constant gradient accelerators vs τ.
\[t_F(U) = \frac{Q}{\omega} \ln \left(\frac{P_0}{P_F} \right) . \] (19)

In the c.g. accelerator, the group velocity varies linearly over the accelerator length and is given by

\[v_g(\text{c.g.}) = \frac{\omega l}{Q} \left(1 - \frac{z}{l} \right) \left(1 - e^{-2\tau} \right) . \] (20)

The incremental time \(dt \) required for the rf wave to move through the distance \(dz \) is given by

\[\frac{dz}{dt} = \frac{v_g}{v_g} . \] (21)

Inserting the value of \(v_g \) from Eq. (20) into Eq. (21) and integrating from \(z = 0 \) to \(z = l \), we obtain for the filling time

\[t_F(\text{c.g.}) = \frac{2Q}{\tau} = \frac{Q}{\omega} \ln \left(\frac{P_0}{P_F} \right) . \] (22)

Thus, the uniform structure and the c.g. structure having the same values of \(\tau \) have equal filling times.

VIII. STORED ENERGY

The stored energy per unit length in the uniform structure is given by

\[u(U) = \frac{P}{v_g} = \frac{P_0 e^{-2\tau} z/l}{v_g} . \] (23)

Integrating over the accelerator length \(l \), the total stored energy is

\[U(U) = P_0 t_F \left(\frac{1 - e^{-2\tau}}{2\tau} \right) . \] (24)
In the c.g. structure, the stored energy per unit length is

\[\frac{u_{\text{c.g.}}}{v_g} = \frac{P}{\omega l} \left[1 - \frac{2}{l} \left(1 - e^{-2\tau} \right) \right] = \frac{P_0 \omega l}{Q} \left(1 - e^{-2\tau} \right). \]

(25)

The stored energy per unit length in the c.g. accelerator is seen in Eq. (25) to be constant over the entire length. Thus, the total stored energy is

\[U_{\text{c.g.}} = \frac{P_0}{\omega} \left(1 - e^{-2\tau} \right) = P_0 \tau_F \left(\frac{1 - e^{-2\tau}}{2\tau} \right), \]

(26)

which is observed to be identical to the stored energy in the uniform structure with the same value of \(\tau \).

IX. FREQUENCY SENSITIVITY

By frequency sensitivity, we refer to the fractional loss of electron energy \(\delta V_0/V_0 \) caused by a fractional change in frequency \(\delta f/f \) of the input radiofrequency power from the frequency giving phase synchronism of the rf wave and the electron beam.

The frequency sensitivity of the uniform structure has been previously calculated\(^7\) and is given by:

\[\frac{\delta V_0}{V_0} \approx \left(\frac{\delta f}{f} \right)^2 \left[\frac{2\tau (\tau + 2)}{e^{\tau} - 1} - 4 \right]. \]

(27)

The frequency sensitivity of the c.g. structure will now be determined using the results of reference 2. The electron energy in the negligible beam loading case is given by:

where \(\tau = \omega t_F / 2Q \) as before, \(t_F \) is the filling time of the structure, \(P_0 \) is the input rf power, \(\ell \) is the length of the section, and \(r \) is the shunt impedance per unit length. The incremental phase shift between the electrons and the wave is given by

\[
\frac{\partial}{\partial z} \left[\frac{\beta_e}{v_g} \right] = \frac{2\pi}{\beta_e} \left(\frac{c}{v_g} - 1 \right) \frac{\delta f}{f} \frac{dz}{\lambda} .
\]

Inserting the value of \(c/v_g \) given in references 1 and 2

\[
\frac{c}{v_g} = \frac{Q\lambda}{2\pi} \frac{1 - e^{-2\tau}}{1 - \frac{z}{\ell} \left(1 - e^{-2\tau} \right)} ,
\]

into Eq. (29) and integrating between the limits of 0 and \(z \) we obtain for the total phase shift (when \(\beta_e = 1 \) and \(c/v_g \gg 1 \))

\[
\Delta \text{c.g.} = Q \frac{5f}{f} \ln \left[1 - \frac{z}{\ell} \left(1 - e^{-2\tau} \right) \right] .
\]

The electron energy when there is no phase shift in the structure can be written:

\[
V_{\text{c.g.}} = \ell A \text{Edz} = El .
\]

Similarly, when there is phase shift, the energy is given by

\[
V'_{\text{c.g.}} = \int_{0}^{\ell} E \cos \Delta \text{dz} ,
\]

which, when Δ remains sufficiently small, is closely equal to

$$V'_{c.g.} = E \int_0^l \left(1 - \frac{\Delta^2}{2} \right) dz$$

(34)

Thus, from Eqs. (32) and (34) we may write

$$\left. \frac{\delta V_0}{V_0} \right|_{c.g.} = -\frac{1}{2l} \int_0^l \Delta^2 dz$$

(35)

Inserting the value of Δ from Eqs. (31) into (35) and integrating, we obtain

$$\left. \frac{\delta V_0}{V_0} \right|_{c.g.} = \left(\frac{Q}{f} \right)^2 \left[\frac{2\tau e^{-2\tau} (\tau + 1)}{1 - e^{-2\tau}} - 1 \right]$$

(36)

For purposes of comparison, the quantities

$$\left. \frac{\delta V_0}{V_0} \right|_U$$

and

$$\left. \frac{\delta V_0}{V_0} \right|_{c.g.}$$

are plotted in Fig. 6. We note that the constant gradient structure has less frequency sensitivity than the uniform structure over the entire range of τ.

X. EXAMPLES

To illustrate the topics discussed in this report, we have considered specific examples of the two structures whose parameters are quite close to those of the proposed Stanford Project M accelerator (Stage I). A comparison of the various derived characteristics is shown in Table I.
FIG. 6--Frequency sensitivities of uniform and constant gradient vs τ.

\[\tau = \frac{aw_p}{2Q} \]
TABLE I.
Comparison of constant gradient and uniform accelerator structures at \(\tau = 0.6 \)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Const. Grad.</th>
<th>Uniform</th>
<th>Ratio (c.g./U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{E_0 l}{V_0}) (Peak Elec. Field/Aver. """)</td>
<td>1.0000</td>
<td>1.3298</td>
<td>0.752</td>
</tr>
<tr>
<td>(\frac{dP}{dz} \bigg</td>
<td>_{z=0} / \frac{dP}{dz} \bigg</td>
<td>_{z=l})</td>
<td>1.0000</td>
</tr>
<tr>
<td>(V_0) (no-load energy)</td>
<td>11.772 Bev</td>
<td>11.600 Bev</td>
<td>1.015</td>
</tr>
<tr>
<td>(\frac{dV}{dt})</td>
<td>33.242 Bev/Amp.</td>
<td>34.155 Bev/Amp.</td>
<td>0.973</td>
</tr>
<tr>
<td>(V) (at (i = 50) ma)</td>
<td>10.110 Bev</td>
<td>9.892 Bev</td>
<td>1.022</td>
</tr>
<tr>
<td>(\eta_{\text{max}}) (Max. Beam Conversion Efficiency)</td>
<td>0.724</td>
<td>0.684</td>
<td>1.058</td>
</tr>
<tr>
<td>(\frac{\eta_{\text{max}}}{i})</td>
<td>177.1 ma</td>
<td>169.8 ma</td>
<td>1.043</td>
</tr>
<tr>
<td>(\frac{v}{c}) (Normalized Group Velocity)</td>
<td>.0201 (\rightarrow) .0061</td>
<td>.0117</td>
<td>1.718 (\rightarrow) 0.521</td>
</tr>
<tr>
<td>(t_F) (Filling Time)</td>
<td>0.872 (\mu \text{sec})</td>
<td>0.872 (\mu \text{sec})</td>
<td>1.000</td>
</tr>
<tr>
<td>(U) (Stored Energy)</td>
<td>731.2 joules</td>
<td>731.2 joules</td>
<td>1.000</td>
</tr>
<tr>
<td>(\Delta z = l) (For (\delta f = 0.1) Mc/sec.)</td>
<td>0.546 rad.</td>
<td>0.546 rad.</td>
<td>1.000</td>
</tr>
<tr>
<td>(8V_0/V_0) (For (\delta f = 0.1) Mc/sec.)</td>
<td>0.0357</td>
<td>0.0424</td>
<td>0.842</td>
</tr>
</tbody>
</table>

1/ Assumed Parameters:
- \(\tau = 0.6 \)
- \(L = 9600 \) ft (293,000 cm.)
- \(P_{\text{ot}} = 1440 \) Mw
- No. of sections = 960
- Length per section: \(l = 10 \) ft (305 cm.)
- \(r = 0.47 \times 10^6 \) ohms/cm.
- \(\omega = 1.79 \times 10^{10} \) rad./sec.
- \(i = 50 \) milliamperes
- \(Q = 13,000 \)
- \(\delta f = 0.1 \) Mc/sec.
XI. CONCLUSIONS

The constant gradient accelerator is equal to or superior to the uniform accelerator in all the characteristics considered in this report. Its relative superiority depends upon the value of τ (the normalized filling time parameter), increasing as τ increases.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>cc</th>
<th>Addressee</th>
</tr>
</thead>
</table>
| 10 | U.S. Atomic Energy Commission
San Francisco Operations Office
2111 Bancroft Way
Berkeley 4, California |
| 3 | U.S. Atomic Energy Commission
Office of Technical Information Ext.
Post Office Box 62
Oak Ridge, Tennessee |
| 2 | Chief of Naval Research
Department of the Navy
Washington 25, D.C.
Attention: Code 422 |
| 2 | Director, Office of Naval Research
San Francisco Branch Office
1000 Geary Street
San Francisco 9, California |
| 1 | CERN, Scientific Information Service
Geneva 23, Switzerland
Attention: Mrs. L. Goldschmidt-Clermont |
| 1 | Dr. H. W. Koch, Chief
High Energy Radiation Section
National Bureau of Standards
Washington 25, D.C. |
| 1 | Dr. M. J. Moore
Nuclear Physics Research
University of Liverpool
Mount Pleasant
Liverpool, England |
| 1 | High Voltage Engineering Corporation
Burlington, Massachusetts
Attention: Librarian |
| 1 | Mr. T. Roumbanis
Sylvania Microwave Tube Laboratory
Mountain View, California |
| 1 | Massachusetts Institute of Technology Laboratory for Nuclear Science
Cambridge 39, Massachusetts
Attention: Dr. P.T. Demos, Assoc. Director |
| 1 | Professor Samuel Devons
The Physical Laboratories
The University
Manchester 13, England |

<table>
<thead>
<tr>
<th>cc</th>
<th>Addressee</th>
</tr>
</thead>
</table>
| 1 | Mr. Tore Wessel-Berg
Norwegian Defense Research Establishment Radar Division
Bergen, Norway |
| 1 | Dr. Craig Nunan
Varian Associates
611 Hansen Way
Palo Alto, California |
| 1 | Dr. Jacques Ovadia
Tumor Clinic, Michael Reese Hospital
29th Street and Ellis Avenue
Chicago 16, Illinois |
| 1 | Brookhaven National Laboratory
Associated Universities, Inc.
Upton, L.I., New York
Attention: Mrs. Sheila Hulse, Bldg. 911 |
| 1 | Dr. Lester S. Skaggs
Argonne Memorial Hospital
University of Chicago
Chicago 37, Illinois |
| 1 | Dr. John S. Foster, Director
Radiation Laboratory
McGill University
Montreal, Quebec, Canada |
| 1 | Ramo-Wooldridge, a Division of Thompson Ramo Wooldridge, Inc.
8433 Fallbrook Avenue
Post Office Box 1006
Canoga Park, California |
| 1 | Mr. Kjell Johnsen
Norwegian Institute of Technology
Trondheim, Norway |
| 1 | Dr. G. K. Green
Brookhaven National Laboratory
Upton, Long Island, New York |
| 1 | Mr. Georges Mourier
C.S.F.
Corbeville (Seine-et-Oise)
France |
| 1 | Applied Radiation Corporation
2404 West Main Street
Walnut Creek, California
Attention: Mr. N. Norris |