Parity Violation in Møller Scattering

First Results from SLAC E158

Yury Kolomensky

UC Berkeley

SLAC EPAC

June 13, 2003

- Physics Motivation
- Experimental Technique
- Results and Interpretations
- Outlook
Beyond the Standard Model

- High Energy Colliders
- Rare or Forbidden Processes
- Symmetry Violations
- Electroweak One-Loop Effects

Complementary Approaches

- Precise predictions at level of 0.1%
- Indirect access to TeV scale physics
Parity Violation in Möller Scattering

- Scatter polarized 50 GeV electrons off *unpolarized* atomic electrons
- Measure \(A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -A_{LR} \)
- Small tree-level asymmetry

\[
A_{PV} = -mE \frac{G_F}{\sqrt{2\pi\alpha}} \frac{16 \sin^2 \Theta}{(3 + \cos^2 \Theta)^2} \left(\frac{1}{4} - \sin^2 \theta_W \right)
\]

- At tree level, \(A_{PV} \approx 280 \cdot 10^{-9} \)
- Raw asymmetry about 130 ppb
 - Goal is to measure it with precision of 8% (10 ppb)
 - Most precise measurement of \(\sin^2 \theta_W \) at low \(Q^2 \) with \(\sigma(\sin^2 \theta_W) < 0.001 \)
Electroweak Physics
E158: New Physics Impact

Compositeness

Neutral currents (GUTs, extra dims)

Scalar interactions (LFV)

➔ Unique window of opportunity
➔ Complementary to collider searches

Λ ~ 15 TeV

M_{Z'} ~ 1 TeV

\[\frac{g^2}{2M^2} < 0.01G_F \]
E158 Collaboration

Institutions

Caltech Syracuse
Princeton Jefferson Lab
SLAC UC Berkeley
CEA Saclay UMass Amherst
Smith College U. of Virginia

60 physicists, 7 Ph.D. students

Chronology: Sept 1997: PAC approval
 1998: Polarized Beam Instrumentation R&D
 1999: Spectrometer and Detector Design
 2000: Construction Funds and Test Beams
 2001: Commissioning Run
 Spring 2002: Physics Run I
 Fall 2002: Physics Run II
 Summer 2003: Physics Run III (final statistics)
Parity-Violating Asymmetry

Measure pulse-pair flux asymmetry:

$$A_{exp} = \frac{F_R - F_L}{F_R + F_L}$$

Correct for difference in R/L beam properties:

$$A_{raw} = A_{exp} - \sum \alpha_i \Delta x_i$$

charge, position, angle, energy
R-L differences
coefficients determined experimentally

Physics asymmetry:

$$A_{PV} = \frac{1}{P_b} \frac{A_{raw}}{1 - f_{bkg}} f_{bkg} A_{bkg}$$

backgrounds
beam polarization
Statistical and Systematic Fluctuations

Detector D, Current I: \(F = D/I \)

\[
A_{\text{pair}} = \frac{F_R - F_L}{F_R + F_L}
\]

Integrate
Detector response: Flux Counting

\[
= \frac{\Delta F}{2F} + \text{fluctuations}
\]

- \(\frac{\Delta I}{2I} \)
- \(\frac{\Delta D}{2D} \)
- \(\frac{\Delta E}{2E} \)

20 million Moller electrons per spill

jitter (ppm) 200
accuracy (ppm)
cumulative (ppb) 110 +/- 9

linac tune

5000 1000 500
30 30 50
200 20 10
+/-1 +/-2 +/-2

precision monitoring and control of electron beam fluctuations

EPAC, 06/13/2003

Yury Kolomensky, First Results from E158
Minimizing Beam Systematics

At the start:

→ ~1000 ppm charge, ~2 μm position asymmetries

1) Passive setup:

- Careful work at the polarized source
- Beam helicity flipped pseudo-randomly at 120 Hz
- Decouple source electrically from the detector

→ ≤100 ppm, ~0.5 μm

2) Active suppression with feedbacks:

→ ~few ppb, nm level

3) Slow asymmetry reversals:

- Physics asymmetries \(\lambda/2 \) plates (2), energy (g-2 precession)
- Beam asymmetry inverter

☞ Cancellation of systematics, and stringent cross-check. Multiple reversals are essential!
Key Ingredients

- High beam polarization and current
- Largest high-power LH2 target in the world
- Spectrometer optimized for Møller kinematics
- Stringent control of helicity-dependent systematics
Polarized Electron Source

"strain" boosts polarization, but introduces anisotropy in response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E158</th>
<th>NLC-500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge/Train</td>
<td>6×10^{11}</td>
<td>1.43×10^{11}</td>
</tr>
<tr>
<td>Train Length</td>
<td>270ns</td>
<td>260ns</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>0.3ns</td>
<td>1.4ns</td>
</tr>
<tr>
<td>Rep Rate</td>
<td>120Hz</td>
<td>120Hz</td>
</tr>
<tr>
<td>Beam Energy</td>
<td>45 GeV</td>
<td>250 GeV</td>
</tr>
<tr>
<td>e⁻ Polarityation</td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

High doping for 10-nm GaAs surface overcomes charge limit.

Low doping for most of active layer yields high polarization.

New cathode

No sign of charge limit!

Old cathode

EPAC, 06/13/2003

Yury Kolomensky, First Results from E158
Beam Diagnostics

Pulse-to-pulse monitoring of beam asymmetries and resolutions:

\[\sigma_{\text{toroid}} \leq 30 \text{ ppm} \]

\[\sigma_{\text{BPM}} \leq 2 \text{ microns} \]

\[\sigma_{\text{energy}} \leq 1 \text{ MeV} \]
Beam Asymmetries

Charge asymmetry at 1 GeV

Energy difference in A line

Position differences < 20 nm

Position agreement ~ 1 nm

EPAC, 06/13/2003

Yury Kolomensky, First Results from E158
Møller Polarimetry

- Møller scattering off polarized valence electrons in Fe foil
 - Large QED asymmetry: \(A_{\text{QED}} \sim \frac{7}{9} P_{\text{beam}} P_{\text{target}} \approx 0.05 \)
 - Same kinematics as PV measurement
 - Dedicated small acceptance movable detector (control backgrounds)

\[\text{Polarimeter signal} \]

\[\text{Raw Asymmetry} \]

\(~ 85\% \) polarization throughout Run I, ~80\% for Run 2
Detector Concept

* 4 integrating detectors
* profile detectors for calibration
Scattered Flux Profile

Møller peak scan: data vs Monte Carlo

Møller scattering kinematics:
\(<Q^2> = 0.0266 \text{ GeV}^{-2}\)
\(<y> = 0.6\)

- ~2 mm geometry
- 1% energy scale
- Radiative tail
- <1% background

Data
Monte Carlo
MOLLER Statistics and Fluctuations

- **Raw Asymmetry Distribution in one PMT**
 - RMS ≈ 3460 ppm

- **Charge Normalized Distribution in one PMT**
 - RMS ≈ 1108 ppm

- **Distribution Regarded for Energy, Position, Angle in one PMT**
 - ≈ 1.8 Million electrons/pulse
 - $\sigma = 527$ ppm

- **Grand Width**
 - ≈ 15 Million electrons/pulse
 - $\sigma = 194$ ppm

EPAC, 06/13/2003
Yury Kolomensky, First Results from E158
Physics Runs

<table>
<thead>
<tr>
<th>Run</th>
<th>Energy</th>
<th>#days @120Hz</th>
<th># Peta-Electron</th>
<th>#spills</th>
<th>Average Charge</th>
<th>Production Efficiency*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run I</td>
<td>45.6 GeV</td>
<td>19.2</td>
<td>67K</td>
<td>125M</td>
<td>5.5 x 10^{11}</td>
<td>63%</td>
</tr>
<tr>
<td>Run I</td>
<td>48.8 GeV</td>
<td>14.8</td>
<td>37K</td>
<td>105M</td>
<td>3.5 x 10^{11}</td>
<td>69%</td>
</tr>
<tr>
<td>Run II</td>
<td>45.6 GeV</td>
<td>15.2</td>
<td>56K</td>
<td>113M</td>
<td>5.2 x 10^{11}</td>
<td>72%</td>
</tr>
<tr>
<td>Run II</td>
<td>48.8 GeV</td>
<td>19.0</td>
<td>63K</td>
<td>153M</td>
<td>4.3 x 10^{11}</td>
<td>78%</td>
</tr>
</tbody>
</table>

*Efficiency is avg. delivered rate normalized to 119Hz

Run I: April 23 12:00 – May 28 00:00 (this result)

Run II: October 10 08:00 – November 13 16:00

- Run I with PEP II, Run II dedicated
- One g-2 flip in each run
- $\lambda/2$ flip roughly once in two days
- Asymmetry inverter flip once a week
- Run I data divided into 24 “slugs”

EPAC, 06/13/2003

Yury Kolomensky, First Results from E158
Raw Asymmetry Statistics

Asymmetry pulls per pulse pair:

- Moller Detector Pull, All Pairs
 - Nent = 8.58631×10^7
 - Mean = 3.147×10^{-6}
 - RMS = 0.9998

Asymmetry pulls per run:

- Moller Pull
 - Nent = 818
 - Mean = 0.00489
 - RMS = 1.02
 - Constant = 128 ± 5.691
 - Mean = 0.01049 ± 0.03551
 - Sigma = 0.9948 ± 0.02699

Yury Kolomensky, First Results from E158
Sensitivity to Beam Systematics

- Detector divided into 3 rings of PMTs: Inner, Middle and Outer

Various linear combinations used to study systematics

Current systematic error: 18 ppb
Transverse Asymmetry

~ 3 ppm up-down asymmetry with 85% transverse polarization

Two-photon exchange QED effect: probe of QED to $O(\alpha^3)$

~5% residual transverse polarization in production data:
Data carefully re-weighted to maintain azimuthal symmetry
Luminosity Monitor Data

- Null test at level of 20 ppb
- Density fluctuations small
- Limits on second order effects

Chi2 = 2.751
Mean = -0.021 +/- 0.016

Yury Kolomensky, First Results from E158
Consistent with expectations for inelastic ep asymmetry, but hard to interpret in terms of fundamental parameters
Raw Asymmetry Result

Moller Detector, Asymmetry vs Slug

Chi2 / ndf = 18.71 / 23
Prob = 0.718
p0 = -0.1654 ± 0.02191
Systematic Uncertainties

- Total correction to $A_{PV} - 47 \pm 24$ ppb
 - Also 0.84 ± 0.05 normalization correction (beam polarization)
- Uncertainty currently dominated by
 - Beam asymmetry systematics
 - 18 ppb, statistics limited
 - EP background subtraction
 - 11 ppb, reduced in Run II with additional collimator
 - Soft photon background
 - 9 ppm, reduced in Run II with additional collimator
 - Beam polarization
 - 6%, work ongoing
- Conservative estimates
 - Plan to reduce systematic error in Run I to ~ 15 ppb
 - Run II corrections will be of order 25 ppb with smaller errors
Significance of parity non-conservation in Møller scattering: 3.6σ

$A_{PV}(e^{-}e^{-} \text{ at } Q^2 = 0.027 \text{ GeV}^2)$:

-152 ± 29 (stat) ± 32 (syst) parts per billion

(preliminary)
The Weak Mixing Angle

\[\sin^2 \theta_{\text{eff}}(Q^2=0.027 \text{ GeV}^2) = 0.2371 \pm 0.0025 \text{ (stat)} \pm 0.0027 \text{ (syst)} \] (preliminary)

Standard Model prediction: 0.2387 \pm 0.0006
(Czarnecki, Marciano, 2000)

Convert to \(\sin^2 \theta_{\text{MS}}^W(M_Z^2) \) for comparison with other experiments:

\[\sin^2 \theta_{\text{MS}}^W(M_Z^2) = 0.2296 \pm 0.0038 \] (preliminary)

PDG2002: 0.2311 \pm 0.0006
(error includes running of \(\sin^2 \theta_{\text{eff}} \) from low energy to \(M_Z \))

EPAC, 06/13/2003
Implications

- Parity is violated in Møller scattering
- Limit on Λ_{LL} at the level of 3-4 TeV (90% C.L.)
- Limits on extra Zs at the level of 400-500 GeV
- Limit on lepton-flavor violating coupling $\sim 0.02 \, G_F$

These numbers are currently on par with collider limits

Clearly need to reduce statistical and systematic errors
Outlook

First measurement of Parity Violation in Møller Scattering
- Preliminary result on $A_{PV} = -152 \pm 29 \pm 32 \text{ ppb}$
- $\sin^2 \theta_{\text{eff}} = 0.2371 \pm 0.0025 \pm 0.0027$ (preliminary)

Experiment poised to achieve proposal goals
- Nontrivial constraints on New Physics at TeV scale with $\sigma(\sin^2\theta_W) \sim 0.001$
 - Unique window of opportunity, complementary to FNAL Run II
- E158 Run II data are being analyzed, will double statistics
- Final physics Run III July-August 2003
 - Beam to ESA on Monday for checkout and systematics studies