Proposal E-165

Fluorescence from Air in Showers (FLASH)

J. Belz\(^1\), Z. Cao\(^2\), P. Chen\(^3\)\(^\ast\), C. Field\(^3\), P. Huentemeyer\(^2\), W-Y. P. Hwang\(^4\), R. Iverson\(^3\), C.C.H. Jui\(^2\), T. Kamae\(^3\), G.-L. Lin\(^4\), E.C. Loh\(^2\), K. Martens\(^2\), J.N. Matthews\(^2\), W.R. Nelson\(^3\), J.S.T. Ng\(^3\), A. Odian\(^3\), K. Reil\(^3\), J.D. Smith\(^2\), P. Sokolsky\(^2\)\(^\ast\), R.W. Springer\(^2\), S.B. Thomas\(^2\), G.B. Thomson\(^5\), D. Walz\(^3\)

\(^1\)University of Montana, Missoula, Montana
\(^2\)University of Utah, Salt Lake City, Utah
\(^3\)Stanford Linear Accelerator Center, Stanford University, CA
\(^4\)Center for Cosmology and Particle Astrophysics (CosPA), Taiwan
\(^5\)Rutgers University, Piscataway, New Jersey

\(^\ast\) Collaboration Spokespersons
Ultra High Energy Cosmic Rays

- Cosmic Rays have been observed with energies beyond 10^{20} eV
- The flux (events per unit area per unit time) follows roughly a power law: $\sim E^{-3}$
- Changes of power-law index at “knee” and “ankle”.
 - Onset of different origins/compositions?
 - Where does the spectrum stop?
Cosmic Ray Spectrum Beyond The Ankle

The graph shows the energy spectrum of cosmic rays, with energy on the x-axis (in eV) and the differential flux $E^3 J(E)$ on the y-axis, where $E^3 J(E)$ is given in units of $(eV^2/m^2/sr/s)$. The data is divided into two categories: HiRes-I Monocular and HiRes-II Monocular, as indicated by the symbols on the graph. The graph includes error bars for each data point, showing the uncertainty in the measurements. The data points are plotted on a logarithmic scale, with energy ranging from 10^{17} to 10^{20} eV.
UHECR: From Source to Detector

CMB \(\gamma @ 2.7 \text{ K} \)

Threshold for \(\Delta \) resonance at \(\sim 6 \times 10^{19} \text{ eV} \)

Acceleration

Propagation

Detection
• Protons above 6×10^{19} eV will lose sizable energy through CMB
• Super-GZK events have been found with no identifiable local sources
Akeno Giant Air Shower Array (AGASA)

100 km² ground coverage

AGASA Scintillation Counter
HiRes Observation of Cosmic Rays with Fluorescence Technique

- The two detector sites are located 12 km apart
- Geometry of an air shower is determined by triangulation.
- Energy of primary cosmic ray calculated from amount of light collected.
Discrepancy Between Two UHECR Experiments

![Graph showing the discrepancy between two UHECR experiments, with data points and annotations for HiRes and AGASA.]
FLASH useful for future UHECR Experiments

Ground-Based: The Pierre Auger Observatory

- Hybrid detection
- 1600 Water Cherenkov detectors
 1.5 km grid in 3000 km²
- 4 fluorescence eyes – Comparable to HiRes
Space-Based: EUSO, OWL/AirWatch
Previous Fluorescence Measurements

• A.N. Bunner, PhD thesis, Cornell (1967)
 – Compiled a spectrum from many sources.
 – Unknown systematic errors.
• F. Kakimoto et al., NIM (1996)
 – Measured 3 narrow band lines not a spectrum.
• M. Nagano, FIWAF presentation (2002)
 – Sr90 source, measuring all known major lines.

⇒ Systematics \textasciitilde 15\% or more.
⇒ Errors in individual lines larger.
Other Proposed Fluorescence Experiments

- Experiments under preparation
 - C. Escobar (Campinas, Brazil): 90Sr source and 5-12 MeV electrons
 - A. Santangelo (Palermo, Italy): 22 keV photon excited fluorescence
 - P. Colin (LAPP, France): e^-, π, p beams at CERN PS and SPS (MACFLY)
 - P. Gorodetzky (College de France): 90Sr source and 50 keV electrons

- Other proposals
 - P. Privitera (Rome, Italy): similar approach to Kakimoto and Nagano
 - H. Klages (Karlsruhe, Germany)

- Most sources at low energies \rightarrow Shower development not possible
- Different systematic errors \rightarrow Efforts complementary
Cosmic Rays versus SLAC Beams: Corresponding e^- and γ energy distributions.

10^{18} eV cosmic ray (proton) at shower max using CORSIKA.

28.5 GeV SLAC beam at shower max using GEANT.
• History has shown that symbiosis between *direct observation* and *laboratory investigation* instrumental in the progress of astrophysics.

• Astro-frontiers mostly involve high energy particles interacting with high density, high temperature, high fields environments.

 ➔ Insights into underlying fundamental physical mechanisms and processes require controlled laboratory experiments.

• Complexity of such systems render fully theoretical treatment difficult; Large scale *simulations* indispensable.

 ➔ Validation of simulation codes relies on laboratory experiments.

• SLAC beams ideal for high energy laboratory astrophysics.