High Gradient Plasma Wakefield Acceleration Using Ultra-Short Electron Bunches

Presented by
Patrick Muggli
for the
E-164 Collaboration:

P. Emma, M. J. Hogan, R. Iverson, P. Krejcik, C. O’Connell, R.H. Siemann, and D. Walz
Stanford Linear Accelerator Center

B. Blue, C. E. Clayton, C. Huang, C. Joshi, K. A. Marsh, and W. B. Mori
University of California, Los Angeles

T. Katsouleas, S. Lee, and P. Muggli
University of Southern California

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
OUTLINE

- Motivation and Goal
- PWFA: linear and non-linear predictions
- Plasma source and experimental set up
- Energy gain and loss measurements
- Hose instability and beam matching
- Proposed schedule
MOTIVATION/GOAL

E-157 and E-162 built a PWFA “laboratory”
built in the FFTB, and expertise to run it

+

Ultra-short electron bunches in the FFTB in 2002

=

Unique and ultimate opportunity to perform PWFA experiments in the context of an actual high energy accelerator

+

Demonstrate ultra-high gradient acceleration of electrons
(1.75 GeV in 5.8 GeV/m) in a long plasma (30 cm)
SHORT BUNCHES IN THE FFTB

- Install four dipole chicane in Li10 during summer 2002 shutdown
 - Existing SLC bunch compressor (RTL) gives 1.2mm σ_z
 - After the 9 GeV point therefore compatible with PEP-II operation
 - Chicane ($R_{56} = -75\text{mm}$) compresses beam to $50\mu\text{m} \sigma_z$
 - Wakefields from 1.9 km add linear energy chirp to the beam
 - Chromatic correction bends in FFTB ($R_{56} = +2\text{mm}$) compress to $12\mu\text{m} \sigma_z$

- Rematch to FFTB with smaller β-functions and add sextupole(s) to control
 chromatic aberrations and second order dispersion
- We are planning for only $100\mu\text{m} \sigma_z$

'atrick Muggli, SLAC-EPAC 2001, 09/24/01
LINEAR PWFA SCALING

- $E_{z,\text{linear}} \propto \frac{N}{\sigma_z}$
 - Short bunch!

- $k_p \sigma_z \cong \sqrt{2}$
 - or $n_p \propto \frac{1}{\sigma_z^2}$

- However, when $n_b > n_p$, non-linear... or “blow-out” regime

- Scaling laws valid?

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
EXPERIMENTAL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E-157/162</th>
<th>E-164</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N) ((\text{mm}))</td>
<td>2\times10^{10}</td>
<td>2\times10^{10}</td>
</tr>
<tr>
<td>(\sigma_z) ((\mu\text{m}))</td>
<td>10-50</td>
<td>20-40</td>
</tr>
<tr>
<td>(\Delta \gamma \gamma) (rms)</td>
<td>1.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>(I_{\text{peak}}) (kA)</td>
<td>(\approx2)</td>
<td>(\approx10)</td>
</tr>
<tr>
<td>(\gamma \varepsilon_x) (m-rad)</td>
<td>3\times10^{-5}</td>
<td>5\times10^{-5}</td>
</tr>
<tr>
<td>(\gamma \varepsilon_y) (m-rad)</td>
<td>0.5\times10^{-5}</td>
<td>1\times10^{-5}</td>
</tr>
</tbody>
</table>

Linear theory gain: \(eE_{z,\text{linear}} = 240 \text{MeV/m} \left(\frac{N}{4 \times 10^{10}} \right) \left(\frac{0.6\text{mm}}{\sigma_z(\text{mm})} \right)^2 \)

E-157/162

120 MeV/m in \(1.5\times10^{14} \text{ cm}^{-3} \)

\(N=2\times10^{10}, \sigma_z=0.6 \text{ mm} \)

E-164

4.3 GeV/m in \(5.6\times10^{14} \text{ cm}^{-3} \)

\(N=2\times10^{10}, \sigma_z=0.1 \text{ mm} \)
PWFA scaling remains valid in the non-linear or “blow-out” regime.

\[eE_z, \text{linear} < eE_z, \text{non linear} \]

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
ACCELERATING FIELD (ON AXIS)

3-D PIC, \(n_p = 5.6 \times 10^{15} \text{ cm}^{-3} \), \(\sigma_z = 100 \mu \text{m} \), \(\sigma_{x,y} = 20 \mu \text{m} \) => \(n_b/n_p > 5 \)

In the non linear, blow-out regime \((n_b > n_p) \):

- Non sinusoidal wake
- Wake spike in the first acceleration region
- Large gradients where the beam charge is finite

\[\approx 6 \text{ GeV/m} \quad \text{“linear”} \]

\[\approx 14 \text{ GeV/m} \quad \text{non linear spike} \]
NUMERICAL SIMULATIONS RESULTS E-164

- Expected energy gain (slice average): **1.75 GeV** or **6%** (over 30 cm)
- Expected energy loss (slice average): **600 MeV** or **2%** (over 30 cm)
- Beam initial energy spread (rms): **1.5%**

N. atrick Muggli, SLAC-EPAC 2001, 09/24/01
Expected energy gain (slice average): 275 MeV or <1% (over 1.4 m)

Expected energy loss (slice average): 100 MeV or <0.5% (over 1.4 m)

Beam initial energy spread: 1.5%
PLASMA SOURCE

\[n_p = 0-6 \times 10^{15} \text{ cm}^{-3}, \quad L = 30-50 \text{ cm} \]

- Metal vapor in a heat-pipe oven

![Diagram of a metal vapor in a heat-pipe oven]

- Photo-ionization

\[E(z) = E_0 e^{-n_0 \sigma_i z} \]

\[n_{p \text{ entrance}} = n_0 \sigma_{i \text{ entrance}} E \]

\[n_{p \text{ entrance}} A_{\text{exit}}^{-n_0 \sigma_i L} \approx 1 \]

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
PLASMA PARAMETERS

Rubidium vapor in a heat-pipe oven:

- $\phi=4.17$ eV, ionize with $h\nu_{YAG\times4}=4.68$ eV (UV, $\lambda=266$ nm)
- $\sigma_{\text{ionization}}(4.68$ eV$)=2\times10^{-20}$ cm2
- $n_0=4\times10^{16}$ cm$^{-3}$, $T_{Rb}\approx320^\circ$C, $P_{\text{He buffer}}=2.5$ Torr
- Required uv fluence for $n_p=10\times10^{15}$ cm$^{-3}$: ≈10 J/cm2
- Small $\sigma_{\text{ionization}} \Rightarrow$ cst fluence over L
 \Rightarrow Raleigh length: $2Z_R=2m\geq L$, $w_0\approx300$ µm
 \Rightarrow very uniform plasma: $1-\exp(-n_0\sigma_iL)<3\%$
- Ionization refraction negligible for $n_{\text{critical}} Z_R L$
 $\Rightarrow n_p \text{ max }=14\times10^{15}$ cm$^{-3}$$>6\times10^{15}$ cm$^{-3}$

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
EXPERIMENTAL SET-UP

- No pellicles in the beams
- e^- beam scattering through ≈ 25 m of He at 2.5 Torr
 $$\theta = \frac{13.6}{E(\text{MeV}) \sqrt{L_R}}, \text{ for } P=2.5 \text{ Torr, } L_R=1.7 \times 10^6 \text{ m}, \Rightarrow \theta = 1.8 \mu \text{rad}$$
 $$\varepsilon \approx \theta^2 L = 0.8 \times 10^{-10} \text{ m-rad} < \varepsilon_x \approx 10^{-9}, \varepsilon_y \approx 10^{-10} \text{ m-rad}$$
- e^- beam impact ionization: $n_e = n_b \sigma_z n_g \sigma_{ii} \approx 10^9 - 10^{11} \text{ cm}^{-3}$

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
IMPACT IONIZATION (E-162, preliminary)

\[E = 28.5 \text{ GeV}, \quad \varepsilon_N = 5 \times 10^{-5} \text{ m-rad}, \quad \beta_x \approx 30 \text{ cm}, \quad d \approx 2.9 \text{ m} \]

Helium \((Z=2, Z_{\text{Li}}=3)\)

- In He: no significant effect on the beam for \(20 \text{ Torr} \times 2.9 \text{ m} \ldots\)

- Ionization cross section for ultra-relativistic \(e^-\): (M. Reiser, 1994)

\[
\sigma_{ii}[cm^2] = 1.87 \times 10^{-20} A_1 [ln(7.52 \times 10^4 A_2 \gamma^2)] - 1
\]

<table>
<thead>
<tr>
<th>Gas</th>
<th>(Z)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(\sigma_{ii}[cm^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>2</td>
<td>0.75</td>
<td>0.62</td>
<td>(4.4 \times 10^{-19})</td>
</tr>
<tr>
<td>Ar</td>
<td>18</td>
<td>2.05</td>
<td>0.11</td>
<td>(2.4 \times 10^{-18})</td>
</tr>
</tbody>
</table>

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
ENERGY GAIN/LOSS MEASUREMENT

- $\sigma_z = 100 \ \mu m$, $\tau_b = 1/3 \ ps \Rightarrow$ no time resolution of the Cherenkov light
- time integrated images with high S/N ratio (16-bit CCD)
- Relative energy gain/loss $>$ initial energy spectrum

From simulations (reminder):
- Expected energy gain (slice average): 1.75 GeV or 6% (over 30 cm)
- Expected energy loss (slice average): 600 MeV or 2% (over 30 cm)
- Beam initial energy spread (rms): 1.5%

- Imaging spectrometer $\sigma_y = \sqrt{\beta_y \varepsilon_y + \left(\frac{\Delta E}{E}\right)^2}$, keep $\beta_y \varepsilon_y << \left(\eta \frac{\Delta E}{E}\right)^2$
- $\beta_y = \beta_y \text{ plasma exit} \ast (\text{Magnification})^2$

Patrick Muggli, SLAC-EPAC 2001, 09/24/01
Hose Instability/ Beam Matching

- No significant instability observed with in E-162 with
 \(n_p \) up to \(2 \times 10^{14} \text{ cm}^{-3} \), and \(L=1.4 \text{ m} \)
 - Hose instability grows as* \(\exp((k_\beta L)^{2/3}) \), where \(k_\beta = \omega_p/(2\gamma^{1/2}c) = (n_p e^2/e_0 m_e 2\gamma)^{1/2} \)
 - E-162: \(n_p=2 \times 10^{14} \text{ cm}^{-3}, L=1.4 \text{ m} \Rightarrow e^{4.5}=92 \)
 - E-164: \(n_p=6 \times 10^{15} \text{ cm}^{-3}, L=0.3 \text{ m} \Rightarrow e^{5.4}=227 \)
 \Rightarrow no significant growth expected(?)

- Beam matching to the plasma: \(\beta_{beam} = \frac{\sigma^2}{\epsilon} = \frac{\omega_p}{\sqrt{2\gamma}} = \beta_{plasma} \)

 \[\sigma_{matched}(\epsilon_N=5 \times 10^{-5} \text{ m-rad,} n_p=6 \times 10^{15} \text{ cm}^{-3})=4.6 \text{ \mu m} \]
 - Minimize spot size variations
 - Stabilize hose instability

* Patrick Muggli, SLAC-EPAC 2001, 09/24/01

* Whittum et al., PRL 1991
Assuming short bunches in the FFTB in October 2002:

- Access to the FFTB after Summer 2002 shutdown for installation (new laser, plasma source, ...)

- Request 3 runs of 3-4 weeks of access to the FFTB and 4 weeks of beam time, separated by 4-6 weeks for recovery, data analysis, and iteration on the experimental set-up

- Flexible!
PWFA “laboratory” built in the FFTB, and expertise acquired during E-157 and E-162

Ultra-short electron bunches available in the FFTB in 2002!

Demonstrate the acceleration of electrons in a long plasma (30 cm) with an accelerating gradient >1 GeV/m

From numerical simulations: gain of 1.75 GeV over 30 cm in a 5.8 GeV/m! (with $\sigma_z=100$ µm bunches)
ACCELERATING FIELD (ON AXIS)

3-D PIC, \(n_p = 5.6 \times 10^{15} \) cm\(^{-3} \), \(\sigma_z = 100 \) µm, \(\sigma_{x,y} = 20 \) µm

- Non sinusoidal wake
- Wake spike in the first acceleration region
- Large gradients where the beam charge is finite

In the non linear, blow-out regime \((n_b > n_p)\):

- Non sinusoidal wake
- Wake spike in the first acceleration region
- Large gradients where the beam charge is finite

\(eE_z(r=0) \) (GeV/m)

\(z \) (cm)

\(\approx 6 \) GeV/m “linear”

\(\approx 14 \) GeV/m non linear spike