E161

MEASUREMENT OF

GLUON SPIN DISTRIBUTION
IN NUCLEONS
USING POLARIZED OPEN CHARM
PHOTOPRODUCTION

- WHY MEASURE THIS
- SOME THEORY
- EXPERIMENTAL SETUP
- PROJECTED RESULTS
- OTHER EXPERIMENTS
E161 COLLABORATION

- UCLA
- Jefferson Lab
- University of Liverpool
- Los Alamos
- University of Massachusetts
- SACLAY
- Institut fur Kernphysik, Mainz
- Old Dominion University
- Ruhr-Universität Bochum, Germany
- Smith College
- SLAC
- University of Virginia
- College of William and Mary
- Yerevan Physics Institute, Yerevan, Armenia
WHY MEASURE
THE GLUON POLARIZATION?

1. FUNDAMENTAL SUM RULE

\[\frac{1}{2} = \frac{1}{2} \cdot \Delta \Sigma + \Delta G + L_z \]

- \(\Delta \Sigma \approx 0.23 \pm 0.07 \)
- \(L_z \) includes quarks and gluons. Possible to measure it.

2. pQCD CONSISTENCY FOR ALL REACTIONS

- \(g_1 \) (SLAC, CERN, HERMES)
- PHOTOPRODUCTION
 (COMPASS, HERMES, SLAC?)
- P-P at RHIC

3. FUNDAMENTAL PROPERTY OF NUCLEON

- 30 YEARS ON UNPOLARIZED PARTON DISTRIBUTIONS
- 10 YEARS ON POLARIZED QUARKS
UNPOLARIZED QUARK DISTRIBUTIONS

DIS LEPTON SCATTERING

SLAC electrons 1968-1986
HERA electrons 1992-
EMC muons 1976-1980
NMC muons 1981-1990
BCDMS muon 1981-1985
CCFR neutrino 1980’s
NuTeV neutrino 1995

PROTON-PROTON

DIRECT PHOTON PRODUCTION

High P_T JETS
Drell-Yan
Z, W, top production

⇒ SEARCH FOR NEW PHYSICS
POLARIZED PARTON DISTRIBUTIONS FROM pQCD EVOLUTION EQUATIONS.
THE FIT OF Gluck, Reya, Stratmann and Vogelsang (1999)

\[\Delta q(x, Q^2) = q_i^+(x, Q^2) - q_i^-(x, Q^2) \]

\[\Delta g \text{ ONLY APPEARS in NLO} \]
POLARIZED PARTON DISTRIBUTIONS FROM pQCD EVOLUTION EQUATIONS.

THE FIT OF E155 COLLABORATION (2000)

\[\Delta G = \int_0^1 g(x) \, dx = 1.6 \pm 0.8 \pm 1.1 \]

Polarized Gluon Distributions at \(Q^2 = 4 \) (GeV/c)\(^2\)
POLARIZED GLUON DISTRIBUTIONS FROM pQCD EVOLUTION EQUATIONS.

THE FITS OF
Altarelli, Ball, Forte and Ridolfi (1998)
\(\Delta G = 1 \) to 2.2
POLARIZED GLUON DISTRIBUTIONS FROM pQCD EVOLUTION EQUATIONS.

VARIOUS FITS

- — — — Brodsky (1995) $\Delta G = 0.7$
- — — — Sterling (1996) $\Delta G = 1.7$
- · · · Forte AR Model (1996) $\Delta G = 1.1$
- - - - Forte OS model (1996) $\Delta G = 1.0$

![Graph showing various fits for polarized gluon distributions with different models and their corresponding ΔG values.](image)
HOW TO MEASURE $\Delta g(x, Q^2)$ DIRECTLY

POLARIZED PHOTON BEAM
POLARIZED LiD TARGET
PHOTON-GLUON FUSION

Photon-Gluon Fusion

\[\gamma \quad \text{Photon-Gluon Fusion} \]

\[g \quad \bar{c} \]

\[c \]

\[\bar{c} \]
TOTAL CHARM PHOTOPRODUCTION σ

$$\sigma_{\gamma p}(k) = \int_{x_{min}}^{1} g(x, Q^2) dx \int_{-1}^{1} \sigma(\hat{s}, \cos(\theta^*)) \beta d \cos(\theta^*)$$

$$x_{min} = 4m_c^2/2Mk$$

$$s = 2Mk + M^2$$

$$\beta = \sqrt{1 - 4m_c^2/\hat{s}} \text{ is the c.m. velocity of } c, \bar{c}$$

$$\hat{s} = xs \text{ is the energy of the photon-gluon system squared}$$

$$\sigma(\hat{s}, \cos(\theta^*)) \text{ is for the hard scattering}$$

↓↑ This proposal
\[
\downarrow\uparrow N + \downarrow\uparrow N \frac{f^q d^4 H}{I} = (\gamma) d J_o / (\gamma) d J_o \nabla = (\gamma) \, \text{cc} \, \nabla
\]

\[
\frac{g' - \frac{1}{g} + \frac{1}{g} + 1}{g + 1} \, (\gamma) = \frac{s}{(s) \sin \theta} \, 6 = (\gamma) \, \nabla
\]

Integrating over \(\cos \), this becomes

\[
\left[\frac{n}{s \gamma^{\mu \nu} - \gamma^{\mu \nu}} \right] + \left[\frac{n}{(s) \sin \theta} \right] \frac{s}{(s) \sin \theta} \, 6 = \left(\left(\cos \theta \right) \cos \theta \right) \, \nabla
\]

Where

\[
\left(\left(\cos \theta \right) \cos \theta \right) \, \nabla = \left(\left(\cos \theta \right) \cos \theta \right) \, \nabla \int \int \int x \, r \, x \, \nabla \, \frac{\mu \mu x}{I} = (\gamma) d J_o \, \nabla
\]

\[
\downarrow\uparrow o - \uparrow\downarrow o = \nabla
\]
CROSS SECTION and $\Delta \sigma$

DEPENDENCY ON CENTER OF MASS ANGLE

![Graph showing the relationship between $\sigma(\beta,|\cos(\theta^*)|)$ and $\Delta \sigma(\beta,|\cos(\theta^*)|)$ depending on \hat{s} values.]
This proposal

(I. Bojak and M. Stratmann)
also calculated by Z. Merebashvili et al.
EXPERIMENTAL STRATEGY

TAG CHARM WITH SINGLE DECAY μ

<table>
<thead>
<tr>
<th></th>
<th>D^+</th>
<th>D^0</th>
<th>D_s^+</th>
<th>Λ_c^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>produced (%)</td>
<td>19</td>
<td>63</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Branching Ratio (%)</td>
<td>17</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>decay to μ^+ (%)</td>
<td>37</td>
<td>47</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>D^-</th>
<th>\bar{D}^0</th>
<th>D_s^-</th>
<th>Λ_c^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>produced (%)</td>
<td>21</td>
<td>71</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>decay to μ^- (%)</td>
<td>40</td>
<td>53</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fraction of different charmed particles produced with $k=40$ GeV photons and a deuterium target with $p_T > 0.5$ GeV generated using PYTHIA 5.7. Also shown is the percent of muons of each charge which ORIGINATED from the parent charmed particle.
BACKGROUND

OTHER SOURCES OF μ

- μ FROM K and π DECAY (Long Lifetime)
- Bethe-Heitler μ PAIRS
- J/ψ DECAY (Small)
- VECTOR MESON DECAYS (Small)

PHYSICS BACKGROUND

- ASSOCIATED PRODUCTION (Small)
- FINAL STATE INTERACTIONS (Small)
- DIFFRACTIVE PRODUCTION (Small)
EXPERIMENTAL STRATEGY

- **HIGH POLARIZATION TARGET**
- **HIGH POLARIZATION BEAM**
- **MOMENTUM of μ**
 - High Field Magnet
 - Fine Grain Hodoscopes
 - Good Time Resolution
- **ABSORB K and π BEFORE DECAY**
 - ~ 10 Interaction Lengths
 - Monte Carlo Predicts Rates
 - Asymmetry Very Small (E155)
 - Two Absorber Setups
 - 75% and 25% of Time
 - Multiple Scattering of μ Almost the Same
- **VETO $\mu^+\mu^-$ PAIRS**
 - (B-H, J/\psi, VECTOR MESONS)
 - Some Singles Remain (Acceptance)
SIGNAL/BACKGROUND
BEFORE DECAY SUBTRACTION

K=35 GeV
K=40 GeV
K=45 GeV

10 < P_μ < 15
5 < P_μ < 10
SIGNAL/BACKGROUND

DECA Y SUBTRACTED
μ SPECTROMETER

NORMAL MODE

TOP VIEW

Return Yoke

Coil.

Lead Shielding

Alumina Absorber

Lead Shielding

Coil.

LASS DIPOLE

Front View of Plane 1
(horizontal bars, simplified)

Front View of Plane 1
(vertical bars, simplified)

Plane 1

Plane 2

Plane 3

Copper Pipe

Photon Beam

15 GeV

10 GeV

5 GeV

1 METER
BACKGROUND: π, K DECAY
CROSS SECTION

Hadron Cross Sections from E154

Cross Section (nb/sr/GeV)

P (GeV/c)

- - WISER FIT
- - PYTHIA

2.75 deg.
5.5 deg.
BACKGROUND: \(\pi, K \) DECAY

E155 HADRON ASYMMETRY 5.5°
BACKGROUND: \(\pi, K \) DECAY

E155 HADRON ASYMMETRY 2.75°
PHYSICS BACKGROUND
NORMAL HADRONIZATION

Photon-Gluon Fusion

γ
c

D
Baryonic String

N
π

N
π

Mesonic string

D

K
PHYSICS BACKGROUND
ASSOCIATED PRODUCTION

Photon–Gluon Fusion

- FACTORIZATION
- RELATIVE DETECTED CROSS SECTION (Few Percent)
- HOW DOES c INTERACT WITH POLARIZED TARGET FRAGMENTS?
Mostly from D (c quark) \(\Rightarrow \) No Λ_c^+

μ^+ Mostly from D (c quark) \(\Rightarrow \) No Λ_c^+

μ^- Mostly from \bar{D} (\bar{c} quark) \(\Rightarrow \) c quark can form
\(\Lambda_c^+ \) PRODUCTION INDEPENDENT OF TARGET FRAGMENT POLARIZATION

- \(\Lambda_c^+ = cud \) with ud in Spin=0 State
- Production does NOT Depend on Polarization of \(c \) Quark.
- Production Does NOT Depend on Polarization of Target Fragments.
- Decay of Polarized \(\Lambda_c^+ \): small correction

DIFFERENCE BETWEEN \(\mu^+ \) and \(\mu^- \)

- Checks These Ideas
- Can Extrapolate to Zero Associated Product
BEAM PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Energy (GeV)</td>
<td>45.1, 48.3, 51.5 ***</td>
</tr>
<tr>
<td>Electron Current (10^{10}/spill)</td>
<td>2.0, 2.0, 2.0</td>
</tr>
<tr>
<td>Peak Photon Energy (GeV)</td>
<td>35.0, 40.0, 45.0</td>
</tr>
<tr>
<td>Photons (10^7/spill)</td>
<td>2, 1.5, 1.1</td>
</tr>
<tr>
<td>Circular Polarization</td>
<td>0.75, 0.80, 0.84</td>
</tr>
<tr>
<td>High p_t Muons/day</td>
<td>160,000, 140,000, 120,000</td>
</tr>
<tr>
<td>days (at 120 Hz, 100% efficiency)</td>
<td>9, 10, 11</td>
</tr>
</tbody>
</table>

*** Use **48.3 GeV, Different Diamond Orientation**

🔥 **E155 had 3×10^9 e$^-$ into ESA**
• Polarization Data taken Simultaneously with PGF
• Pairs with $1.2 < M_{\mu\mu} < 2.8$ GeV.
• >5 times the PGF rate.
• Elastic (from ^6Li), Quasi Elastic and Inelastic Contributions.
• Relative importance depends on kinematics.
• Depends on Nuclear and Nucleon Form Factors and Polarized Structure Functions.
• Asymmetry about 3% depending on Kinematics.
EXPECTED RESULTS
AVERAGE

SYSTEMATIC ERRORS $\sim 8\%$
OTHER EXPERIMENTS

COMPASS

- NEXT GENERATION SMC
 5 TIMES SMC LUMINOSITY
- $\mu + d \rightarrow c\bar{c}$ (LiD TARGET)
- DETECT D, \bar{D}
- BEAM ENERGY = 160 GeV
- MOST OF DATA AT VERY LOW Q^2
- ALSO USE HIGH P_T JETS
- START UP JUNE 2001
- PROBABLY SLOW STARTUP
OTHER EXPERIMENTS
HERMES

- LOW ELECTRON ENERGY (27 GeV)
- LOW LUMINOSITY
- RUNNING NOW
- TWO “HIGH P_T JETS”
- $0.06 < x < 0.28$
- FIRST RESULTS: $\Delta G/G = 0.41 \pm 0.18$

RHIC

Gluon Compton Scattering

$$g + q \rightarrow \gamma + X$$

$$A_{LL} \cdot d\sigma \sim \Sigma a \cdot \Delta q_a \cdot \Delta g \cdot d\Delta\sigma (q_a + g \rightarrow \gamma + X)$$

Gluon Fusion

$$g + g \rightarrow jet + jet$$

$$A_{LL} \cdot d\sigma \sim \Delta g \cdot \Delta g \cdot d\Delta\sigma (g + g \rightarrow X + X)$$
COMPARISON OF EXPERIMENTS

ESTIMATED PROJECTED ERRORS

COMPASS 3 YEARS
\(\gamma g \) fusion

STAR and PHENIX

HERMES
(REAL DATA)

E161
REQUEST TO SLAC

- RESOURCES TO BUILD BEAM
- RESOURCES TO BUILD DETECTOR
- RESOURCES FOR TARGET MAGNET and μWAVE HARDWARE
- 3 WEEKS CHECKOUT AT LOW REPETITION RATE
- 2 MONTHS OF DATA TAKING
 - 120 Hz Parasite on PEP-II
 - 50% Data Collection Efficiency
CONCLUSIONS

- **IMPORTANT TO MEASURE** $\Delta g/g$
- **E161 CAN MEASURE** $\Delta g/g$ **DIRECTLY**
- **PRECISION \geq OTHER EXPERIMENTS**
- **COMPLEMENTARY TO OTHER EXPERIMENTS USING DIFFERENT HARD SCATTERING PROCESSES**