Sensitivities of one-prong tau branching fractions to tau neutrino mass, mixing, and anomalous charged current couplings

M.T. Dova1), J. Swain2), and L. Taylor2)

March 1999, SLAC
Workshop on the τ-charm Factory

1) Universidad Nacional de La Plata, La Plata, Argentina
2) Northeastern University, Boston, USA

Introduction

We analyse the sensitivity to new physics of the τ partial widths for the following decays:

- $\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$
- $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$
- $\tau^- \rightarrow \pi^- \nu_\tau$
- $\tau^- \rightarrow K^- \nu_\tau$

We consider the effects of the following:

- mass m_{ν_3} of the third generation neutrino ν_3
- mixing of ν_3 with a 4th generation neutrino ν_4 (mass $> M_Z/2$) (kinematically forbidden \Rightarrow suppression of decay rate)
- anomalous weak charged current magnetic dipole coupling (κ)
- anomalous weak charged current electric dipole coupling ($\bar{\kappa}$)
- Michel parameter η
Theoretical Predictions (m_{ν_τ} and $\sin^2 \theta$)

\[B_{\ell \text{th.}} = \frac{G_F^2 m_{\tau}^5}{192\pi^3} \left(1 - 8x - 12x^2 \ln x + 8x^3 - x^4 \right) \]
\[\times \left[\left(1 - \frac{\alpha(m_{\tau})}{2\pi} \left(\pi^2 - \frac{25}{4} \right) \right) \left(1 + \frac{3}{5} \frac{m_{\tau}^2}{m_W^2} \right) \right] \]
\[\times \left[1 - \sin^2 \theta \right] \left[1 - 8y(1 - x)^2 + \cdots \right] \]

1. $x = m_\ell^2/m_{\tau}^2$, $y = m_{\nu_3}/m_{\tau}$
2. QED coupling, $\alpha(m_{\tau}) \simeq 1/133.3$
3. W mass, $m_W = 80.41 \pm 0.10$ GeV
4. ellipsis denotes negligible higher order terms

1st square brackets: radiative corrections
2nd square brackets: mixing of ν_3 and ν_4 ($\nu_{\tau} = \cos \theta |\nu_3\rangle + \sin \theta |\nu_4\rangle$)
3rd square brackets: phase-space suppression for $m_{\nu_3} > 0$
Theoretical Predictions (\(m_{\nu_{\tau}} \text{ and } \sin^2 \theta\))

Branching fractions for \(\tau^- \rightarrow h^- \nu_{\tau}\), with \(h = \pi/K\)

\[
B_{h_{\text{th.}}}^3 = \frac{G^2 m_{\tau}^3}{16 \pi} \tau_{\text{F}} f_h^2 |V_{\alpha \beta}|^2 (1 - x)^2 \left(1 + \frac{2\alpha}{\pi} \ln \frac{m_2}{m_{\tau}} + \cdots\right) \\
[1 - \sin^2 \theta] \left[1 - y \left(\frac{2 + x - y}{1 - x}\right) \left(1 - \frac{y(2 + 2x - y)}{(1 - x)^2}\right)^{\frac{1}{2}}\right]
\]

(2)

- \(x = m_h^2 / m_{\tau}^2\),
- \(f_{\pi} |V_{ud}| = (127.4 \pm 0.1)\text{MeV} \) (from \(\pi^- \rightarrow \mu^- \bar{\nu}_\mu\))
- \(f_K |V_{us}| = (35.18 \pm 0.05)\text{MeV} \) (from \(K^- \rightarrow \mu^- \bar{\nu}_\mu\))
- ellipsis represents missing terms estimated to be \(O(\pm 0.01)\)

1st term in square brackets: mixing with a fourth generation neutrino

2nd term in square brackets: phase-space suppression for \(m_{\nu_{\tau}} > 0\)

Additional constraint from non-threshold determinations of tau-mass, e.g. CLEO analysis of \(\tau^+ \tau^- \rightarrow (\pi^+ n \pi^0 \bar{\nu}_\tau)(\pi^- m \pi^0 \nu_{\tau}) \) (with \(n \leq 2, m \leq 2, 1 \leq n + m \leq 3\))

\[m_{\tau} = (1777.8 \pm 0.7 \pm 1.7) + \frac{[m_{\nu_{\tau}}(\text{MeV})]^2}{1400 \text{MeV}}\]
Theoretical Predictions \((\kappa, \tilde{\kappa}, \eta)\)

Anomalous dipole moment couplings described by effective Lagrangian

\[
\mathcal{L} = \frac{g_{\pi}}{\sqrt{2}} \left[\gamma_{\mu} + \frac{i\sigma_{\mu\nu}}{2m_{\tau}} (\kappa_{\tau} - i\tilde{\kappa}_{\tau} \gamma_{5}) \right] P_{\mu} \nu_{\tau} W^{\mu} + \text{(Hermitian conjugate)},
\]

Theoretical predictions for branching fractions \(B_{\ell}\) for \(\tau^{-} \rightarrow \ell^{-}\bar{\nu}_\ell \nu_{\tau}(X_{EM})\), with \(\ell^- = e^-, \mu^-\) and \(X_{EM} = \gamma, \gamma\gamma, e^+e^-, \ldots\)

\[
B_{\ell}^{\text{th.}} = \frac{G_{F}^{2} m_{\tau}^{5} r_{\tau}}{192\pi^{3}} \left(1 - 8x - 12x^{2}\ln x + 8x^{3} - x^{4}\right) \\
\times \left(1 - \frac{\alpha(m_{\tau})}{2\pi} \left(\pi^{2} - \frac{25}{4}\right)\right) \left(1 + \frac{3}{5} \frac{m_{\tau}^{2}}{m_{W}^{2}}\right) [1 + \Delta_{\ell}]. \tag{3}
\]

Effects of new physics parametrised by \(\Delta_{\ell}\)

\[
\begin{align*}
\Delta_{\ell}^{\kappa} &= \frac{\kappa}{2} + \frac{\kappa^{2}}{10} \tag{4} \\
\Delta_{\ell}^{\tilde{\kappa}} &= \frac{\tilde{\kappa}^{2}}{10} \tag{5} \\
\Delta_{\ell}^{\eta} &= 4\eta_{\tau}\ell\sqrt{x} \tag{6}
\end{align*}
\]

Both leptonic tau decay modes probe are sensitive to \(\kappa\) and \(\tilde{\kappa}\)

Only \(\tau^{-} \rightarrow \mu^{-}\bar{\nu}_\mu \nu_{\tau}\) sensitive to \(\eta\) (relative suppression of \(m_{e}/m_{\mu}\) for \(\tau^{-} \rightarrow e^{-}\bar{\nu}_e \nu_{\tau}\))

Semi-leptonic tau branching fractions are not sensitive
 Fits

Three sets of fits are performed

- **Case 1**
 Use current world averages of the experimental measurements.

- **Case 2**
 Use estimated errors on measurements at a τcF
 (assume no improvement in the tau lifetime error)

- **Case 3**
 Use estimated errors on measurements at a τcF
 (and suppose CLEO/b-factories reduce tau lifetime error by $\times 2$)

For Cases 2 and 3 the central values are unknown
⇒ adjust branching fractions to their SM central values, so predictions are not arbitrarily biased by current experimental central values.
Input Parameters

<table>
<thead>
<tr>
<th>Value</th>
<th>Future Error</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_τ (MeV)</td>
<td>$1776.96^{+0.31}_{-0.27}$ (BES)</td>
<td>0.1 (Marbella)</td>
<td>0.1 (Marbella)</td>
<td></td>
</tr>
<tr>
<td>τ_τ (fs)</td>
<td>290.5 ± 1.0 (TAU98)</td>
<td>1.0 (TAU98)</td>
<td>0.5 (our hope)</td>
<td></td>
</tr>
<tr>
<td>B_π (%)</td>
<td>17.81 ± 0.06 (TAU98)</td>
<td>0.018 (Marbella)</td>
<td>0.018 (Marbella)</td>
<td></td>
</tr>
<tr>
<td>B_μ (%)</td>
<td>17.36 ± 0.06 (TAU98)</td>
<td>0.017 (Marbella)</td>
<td>0.017 (Marbella)</td>
<td></td>
</tr>
<tr>
<td>B_ρ (%)</td>
<td>11.08 ± 0.13 (TAU98)</td>
<td>0.011 (Marbella)</td>
<td>0.011 (Marbella)</td>
<td></td>
</tr>
<tr>
<td>B_K (%)</td>
<td>0.695 ± 0.026 (TAU98)</td>
<td>0.003 (Marbella)</td>
<td>0.003 (Marbella)</td>
<td></td>
</tr>
</tbody>
</table>

Fits for m_{ν_τ} and $\sin^2 \theta$

- Combined likelihood fits to all four tau decay channels
- Include constraint from CLEO tau mass determination

Fits for κ, $\bar{\kappa}$, and $\eta_{T\mu}$

- Combined likelihood fits two leptonic tau decay channels
- Semi-leptonic decays are not sensitive

Each parameter is analysed separately

- conservatively assume in each case that the other four parameters are zero
Results

Constraints on \(m_{\nu_3} \), \(\sin^2 \theta \), \(\kappa \), \(\bar{\kappa} \), and \(\eta_{\tau\mu} \) (95% C.L.)

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(now)</td>
<td>((\tau CF, \sigma_{\tau} = 1.0 \text{ fs}))</td>
<td>((\tau CF, \sigma_{\tau} = 0.5 \text{ fs}))</td>
</tr>
<tr>
<td>(m_{\nu_3} < 36 \text{ MeV})</td>
<td>(m_{\nu_3} < 34 \text{ MeV})</td>
<td>(m_{\nu_3} < 28 \text{ MeV})</td>
</tr>
<tr>
<td>(\sin^2 \theta < 0.0053)</td>
<td>(\sin^2 \theta < 0.0039)</td>
<td>(\sin^2 \theta < 0.0024)</td>
</tr>
<tr>
<td>(-0.011 < \kappa < 0.017)</td>
<td>(-0.011 < \kappa < 0.009)</td>
<td>(-0.006 < \kappa < 0.005)</td>
</tr>
<tr>
<td>(</td>
<td>\bar{\kappa}</td>
<td>< 0.26)</td>
</tr>
<tr>
<td>(-0.030 < \eta_{\tau\mu} < 0.052)</td>
<td>(-0.030 < \eta_{\tau\mu} < 0.029)</td>
<td>(-0.017 < \eta_{\tau\mu} < 0.016)</td>
</tr>
</tbody>
</table>

For Cases 2 and 3 the limiting error is from tau lifetime
(arbitrarily setting all other errors to zero yields negligible improvement)
Discussion (m_{ν_τ})

Limit on m_{ν_3} can be interpreted as limit on m_{ν_τ}
($\sin^2 \theta$ is small as is mixing of m_{ν_3} with lighter neutrinos)

Our constraint is less stringent than the best direct constraint
($m_{\nu_\tau} < 18.2$ MeV at 95% C.L. from ALEPH) but it is

- statistically independent
- insensitive to fortuitous or pathological events at kinematic limits
- almost independent of absolute energy scale of the detectors
- independent of details of resonant structure of multi-hadron τ decays

Our constraint on m_{ν_τ} improves only slightly with the τcF input

Our method is not competitive with other τcF analyses
for which expected τcF sensitivity is $O(2$ MeV)
Discussion \((\sin^2 \theta)\)

Our upper limit on \(\sin^2 \theta\) is already the most stringent experimental constraint on mixing of the third and fourth neutrino generations.

This constraint will improve by a factor of up to two using future \(\tau cF\) data (depending on the improvement in the error on \(\tau_\tau\)).

We anticipate that this technique will continue to provide the most stringent constraints in the foreseeable future.
Discussion (κ, $\bar{\kappa}$)

Our results on κ and $\bar{\kappa}$ are currently the most precise

Constraint on $\bar{\kappa}$ is less stringent compared to κ due to lack of linear terms

Anomalous magnetic moments due to compositeness are expected to be of order m_τ/Λ where Λ is the compositeness scale

$\Rightarrow \tau$ appears to be a point-like Dirac particle up to

$$\Lambda \approx m_\tau/0.017 = 105 \text{ GeV}$$

Results are comparable to those from anomalous weak neutral current couplings and better than those from anomalous EM couplings

The results for κ and $\bar{\kappa}$ will improve with $\tau c F$ data and will probe the point-like nature of the tau up to a scale of

$$\Lambda = O(180 \text{ GeV})$$ (for no improvement in τ_τ)

$$\Lambda = O(300 \text{ GeV})$$ (for $\times 2$ improvement on τ_τ error)
Discussion ($\eta_{\tau\mu}$)

This $\eta_{\tau\mu}$ is currently the most precise

Compare to $\eta_{\tau\mu} = -0.04 \pm 0.20$ from momentum spectrum of muons from τ decays

$\eta_{\tau\mu}$ sensitive to type II charged Higgs

$$\eta_{\tau\mu} = -\left(\frac{m_\tau m_\mu}{2} \right) \left(\frac{\tan \beta}{m_H} \right)^2 \quad (7)$$

- $\tan \beta$ - ratio of VEV's of two Higgs fields
- m_H - mass of the charged Higgs

Our fit yields $\eta_{\tau\mu} > -0.0232 \Rightarrow$

$$m_H < (2.01 \tan \beta) \text{ GeV (95\%C.L.)}$$

For τF: $\eta_{\tau\mu} > -0.014 \Rightarrow$

$$m_H < (2.55 \tan \beta) \text{ GeV (95\%C.L.)}$$

$\sim 25\%$ reduction in maximum value of $\tan \beta$ for given m_H compared to today
<table>
<thead>
<tr>
<th>$\tau e^+ e^-$</th>
<th>$\tau \mu^+ \mu^-$</th>
<th>$\tau \rightarrow \pi^- \nu_\tau$</th>
<th>$\tau \rightarrow K^- \nu_\tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today</td>
<td>Slight improvement (but complementary)</td>
<td>World-best</td>
<td>World-best</td>
</tr>
<tr>
<td>$\sin^2 \theta$</td>
<td>κ</td>
<td>$\hat{\kappa}$</td>
<td>$\hat{\kappa}$</td>
</tr>
<tr>
<td>θ</td>
<td>τ</td>
<td>τ</td>
<td>τ</td>
</tr>
<tr>
<td>θ</td>
<td>τ</td>
<td>τ</td>
<td>τ</td>
</tr>
<tr>
<td>τ compositeness</td>
<td>$\Lambda > 105 \text{ GeV}$</td>
<td>$\Lambda > 105 \text{ GeV}$</td>
<td>$\Lambda > 105 \text{ GeV}$</td>
</tr>
<tr>
<td>η</td>
<td>$m_H < (2,1) \text{ GeV}$</td>
<td>$m_H < (2,1) \text{ GeV}$</td>
<td>$m_H < (2,1) \text{ GeV}$</td>
</tr>
</tbody>
</table>

Ultimate limitation is the error on the tau lifetime.
Tau Neutrino Mass from Decay Rates of Charmed Pseudoscalar Mesons

J. Swain and L. Taylor
Northeastern University, Boston, Mass.

March 1999, SLAC Workshop on the \(\tau \)-charm Factory
The Idea

- Charmed pseudoscalars D and D_s can (just) decay to $\tau \nu_\tau$

- Sensitive to neutrino mass

- Theoretical errors (f_P; $P=D,D_s$) can be taken out using ratio of muon and tau decay rates

- $\tau c F$ a good source of charmed pseudoscalars (P. Kim)

$$x_P = \frac{\text{BR}(P \to \tau^+ \nu_\tau)}{\text{BR}(P \to \mu^+ \nu_\mu)}$$

$$x_P = \sqrt{M_P^4 - 2M_P^2(m_\tau^2 + m_\nu^2)} + (m_\tau^2 - m_\nu^2)^2 \frac{M_P^2(m_\tau^2 + m_\nu^2) - (m_\tau^2 - m_\nu^2)^2}{(M_P^2 - m_\mu^2)^2 m_\mu^2}$$
Fig. 4. Curves of x_D and x_F as functions of m, calculated using (20) and the values given in the text for the relevant masses.
<table>
<thead>
<tr>
<th>xP (Mev)</th>
<th>xP</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>9.72019</td>
</tr>
<tr>
<td>15</td>
<td>2.60433</td>
</tr>
<tr>
<td>14</td>
<td>9.72298</td>
</tr>
<tr>
<td>13</td>
<td>2.61234</td>
</tr>
<tr>
<td>12</td>
<td>9.7256</td>
</tr>
<tr>
<td>12</td>
<td>2.61949</td>
</tr>
<tr>
<td>11</td>
<td>9.72803</td>
</tr>
<tr>
<td>11</td>
<td>2.61924</td>
</tr>
<tr>
<td>10</td>
<td>9.73027</td>
</tr>
<tr>
<td>10</td>
<td>2.62227</td>
</tr>
<tr>
<td>9.73233</td>
<td>6.2227</td>
</tr>
<tr>
<td>9.73424</td>
<td>6.2508</td>
</tr>
<tr>
<td>9.73592</td>
<td>5.6227</td>
</tr>
<tr>
<td>9.73746</td>
<td>5.6282</td>
</tr>
<tr>
<td>7</td>
<td>6.6316</td>
</tr>
<tr>
<td>6</td>
<td>9.73879</td>
</tr>
<tr>
<td>6</td>
<td>6.6349</td>
</tr>
<tr>
<td>5</td>
<td>9.73984</td>
</tr>
<tr>
<td>4</td>
<td>6.6391</td>
</tr>
<tr>
<td>3</td>
<td>9.74416</td>
</tr>
<tr>
<td>2</td>
<td>6.6376</td>
</tr>
<tr>
<td>1</td>
<td>9.74282</td>
</tr>
<tr>
<td>1</td>
<td>6.6389</td>
</tr>
<tr>
<td>0</td>
<td>9.74183</td>
</tr>
</tbody>
</table>
How Well Could We Do?

Not much of the basic input information is known, so let's estimate freely assuming no theoretical errors and no errors on pseudoscalar masses:

- Expect $0.9 \times 10^7 \ D_s \ pairs \ per \ year \ and \ 2.0 \times 10^7 \ D^\pm \ pairs \ per \ year \ at \ 10\text{fb}^{-1}$.
- Know $\text{BR}(D_s \rightarrow \mu\nu) \sim 4 \times 10^{-3}$ (large errors).
- Expect $\text{BR}(D \rightarrow \mu\nu) \sim 7 \times 10^{-4}$

Suppose we have $10^7 \ D_s$'s and and get 40,000 D_s decaying to muons. Assume the statistical error on this quantity dominates the error on x_{D_s}.

- 5 parts per mil, and an absolute error on x of .05 - i.e. about 25 MeV at one sigma.

Suppose we have $2 \times 10^7 \ D$'s. Then we get 14000 D's decaying to muons. Assume again this error dominates (less of a good approximation)

- 8.5 parts per mil, and an absolute error on x of .022 - i.e. about 13 MeV at one sigma.
Conclusions

- Leptonic charmed meson decays can give us some statistically independent information about a possible tau neutrino mass complementary to what comes from kinematics.

- There's a lot we still don't know about charmed mesons, but most of the theoretical uncertainties (form factors) can be eliminated by taking ratios.

- Perhaps not the greatest way to get information on a neutrino mass, but it's one more piece!

- Beware highly unsuppressed $D \rightarrow \mu \nu \bar{\nu}$ (Rizzo)
 - Bguts on make this harder? (P. Kim)
First Steps in Tau Neutrino Mass Determinations from One-Prong Tau Decay Kinematics

J. Swain1 w/ J. Kirkby2, D. McNally3, L. Taylor1
Northeastern University, Boston, Mass.

March 1999, SLAC
Workshop on the τ-charm Factory

1 Northeastern University, Boston, USA
2 CERN, Geneva, Switzerland
3 EPFL, Lausanne, Switzerland
The Idea

- Measure the momentum spectra of pions from \(\tau \) decays almost at rest (JZK).
- Sensitive to neutrino mass
- Theoretical errors should be easily controllable
- Complementary to multi-pion invariant mass analyses and others.

\[5 \times 10^6 \ \tau \rightarrow \pi \nu \] decays
- Baseline resolutions (Marbella)
- \(\sim 5 \) MeV neutrino mass sensitivity at 1 \(\sigma \) (no beam, stat. only)
- More work needed, but this looks promising.
 (But see more detailed talk of A. Stahl)