I would like to join the others in welcoming you to SLAC for the three-day workshop exploring physics opportunities near the energy threshold for tau-charm production. A problem facing all high energy physics and physicists today derives from the trend to have larger and larger collaborations work at fewer and fewer machines operating at the energy frontier of the field using a variety of particle beams in collision. These collaborations now number in the many hundreds and construction of the machines requires expenditures in the multi-billion dollar range. A lead time for planning, development and construction near a decade is currently a necessity.

The question is whether selected topics in high energy physics can be addressed without requiring this type of effort but at the same time extending hope to produce solutions to highly fundamental problems. The answer to this question is clearly yes. There are examples: The recent discoveries at the Super-Kamiokande on atmospheric neutrinos, super precision measurements of the g factor of the muon and of Møller scattering and several others.

The purpose of this workshop is to re-examine whether a dedicated experimental physics program to examine the very rich region of tau and charm physics near threshold is still a similar "window of opportunity." The answer to this question has become less clear since copious data in the energy region not taken near threshold and not taken with dedicated facilities will accumulate from existing machines and the new B-Factories which will enter the data-taking stage soon. The results of this workshop will give guidance on this subject to those planning dedicated programs for this energy region, in particular to our colleagues from China who are considering seriously the construction of a Tau-Charm factory.

I am pleased that SLAC is again hosting a workshop on this subject. We think this is particularly appropriate since Tau physics and a large part of charmed spectroscopy was born at this place.