Study of Timing and Efficiency Properties of Multi-Anode Photomultipliers

Stanford Linear Accelerator Center, Group EB

October 20th, 2004
Motivation

Using PMTs in Cherenkov detector:
DIRC particle identification subsystem in BaBar detector
Motivation

Using PMTs in Cherenkov detector:
DIRC particle identification subsystem in BaBar detector
\(\approx 11000 \) EMI 9125FLB17 PMTs,
- 1.7 ns timing resolution, 30 mm diameter
Measuring PMT position and photon arrival time
Timing mainly used for signal vs. background separation
Motivation

Using PMTs in Cherenkov detector:
DIRC particle identification subsystem in BaBar detector
\[\approx 11000 \text{ EMI 9125FLB17 PMTs}, \]
- 1.7 ns timing resolution, 30 mm diameter

Measuring PMT position and photon arrival time
Timing mainly used for signal vs. background separation

Event display without (top) and with (bottom) time cut
Motivation

Using PMTs in Cherenkov detector:
DIRC particle identification subsystem in BaBar detector
≈ 11000 EMI 9125FLB17 PMTs,
1.7 ns timing resolution, 30 mm diameter
Measuring PMT position and photon arrival time
Timing mainly used for signal vs. background separation

Performance:

<table>
<thead>
<tr>
<th></th>
<th>Current limit</th>
<th>Could be improved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>size of bar</td>
<td>≈ 4.1 mrad</td>
<td>focusing optics</td>
</tr>
<tr>
<td>size of PMT pixel</td>
<td>≈ 5.5 mrad</td>
<td>smaller pixel size</td>
</tr>
<tr>
<td>chromaticity</td>
<td>≈ 5.4 mrad</td>
<td>better time resolution</td>
</tr>
<tr>
<td>$n = n(\lambda)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total single photon</td>
<td>≈ 9.6 mrad</td>
<td></td>
</tr>
<tr>
<td>total per track</td>
<td>≈ 2.4 mrad</td>
<td></td>
</tr>
</tbody>
</table>

Event display without(top) and with(bottom) time cut
Motivation

Burle MCP 85011

- **Multiplier**: 25 µm pore MCP
- **Effective area**: 51 mm × 51 mm
- **Packing density**: 67%
- **Spectral response**: 165 nm ... 660 nm
- **Gain**: 0.5×10^6
- **Uniformity**: 1: 1.25
- **Transit time spread**: 50 ps ... 60 ps

(All data from company data sheets)

Hamamatsu PMT H-8500

- **12 stage metal channel dynode**: 49 mm × 49 mm
- **Effective area**: 49 mm × 49 mm
- **Spectral response**: 300 nm ... 650 nm
- **Gain**: 1×10^6
- **Uniformity**: 1:3
- **Transit time spread**: 400 ps

(All data from company data sheets)
Motion Controlled Setup

Light source
- Pilas pico-second laser
- $\lambda = 635 \text{ nm} / 430 \text{ nm}$
- $\sigma_{\text{pulse}} < 35 \text{ ps} / 60 \text{ ps}$
- Operated in single photon mode

Motion Controller:
- Repeatability $< 7 \, \mu \text{m}$
Motion Controlled Setup

Light source
- Pilas pico-second laser
 - $\lambda = 635$ nm/430 nm
 - $\sigma_{\text{pulse}} < 35$ ps/60 ps
- Operated in single photon mode

Motion Controller:
- Repeatability < 7 μm

PMT
- Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring
- Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)
Motion Controlled Setup

Light source
- Pilas pico-second laser
- $\lambda = 635 \text{ nm}/430 \text{ nm}$
- $\sigma_{\text{pulse}} < 35 \text{ ps}/60 \text{ ps}$
- Operated in single photon mode

Motion Controller:
- Repeatability $< 7 \mu\text{m}$

PMT
- Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring
- Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier
- Elantec, EL2075C, $40\times$, 2 GHz bandwidth
Motion Controlled Setup

Light source
- Pilas pico-second laser
 - $\lambda = 635\ \text{nm}/430\ \text{nm}$
 - $\sigma_{\text{pulse}} < 35\ \text{ps}/60\ \text{ps}$
- Operated in single photon mode

Motion Controller:
- Repeatability $< 7\ \mu\text{m}$

PMT
- Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring
- Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier
- Elantec, EL2075C, $40\times$, 2 GHz bandwidth

Readout
- Single threshold discrimination
Motion Controlled Setup

Light source
- Pilas pico-second laser
- $\lambda = 635 \text{ nm} / 430 \text{ nm}$
- $\sigma_{\text{pulse}} < 35 \text{ ps} / 60 \text{ ps}$
- Operated in single photon mode

Motion Controller:
- Repeatability $< 7 \mu m$

PMT
- Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring
- Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier
- Elantec, EL2075C, $40 \times$, 2 GHz bandwidth

Readout
- Single threshold discrimination
- CAMAC based readout
- 500 ps per count TDC (LeCroy 2277) connected to Linux PC
Scans: 100 μm \times 1 mm
Efficiency relative to Photonis XP2262B PMT.
Burle more uniform, but Hamamatsu higher peak efficiency.
2D Efficiency Comparison – Blue (430 nm)

Burle

Hamamatsu

Scans: 500 μm × 1 mm

Efficiency relative to Photonis XP2262B PMT.

For Cherenkov detectors the more relevant wavelength region.

Burle more uniform; similar efficiencies.
Timing

Pilas @ one point on PMT

Burle: narrow main components smaller MCP-to-cathode gap version: smaller tail.
Timing

To measure timing properties:
need faster electronics!

Using Burle MCP with reduced MCP-to-cathode gap: 750 µm (std: 6 mm)
Timing

To measure timing properties:
need faster electronics!

Our group developed:
Constant Fraction Discriminator

Using Burle MCP with reduced MCP-to-cathode gap: 750 µm (std: 6 mm)
Timing

To measure timing properties:
need faster electronics!

Our group developed:
Constant Fraction Discriminator

Time-to-amplitude converter
Sample-and-hold
VME based 12-bit ADC
⇒≈ 25 ps resolution
Using Burle MCP with reduced MCP-to-cathode gap: 750 µm (std: 6 mm)
Hit Time distribution fitted with double Gaussian + flat background.
Plotting sigma of narrow Gaussian.
Very uniform, very good timing (≈ 70 ps)
Outside of pad, low number of hits \Rightarrow larger uncertainty.
Prototype and Test Beam

- Focusing optics eliminates effect of bar size
- Smaller pixels improve the θ_c resolution
- Smaller expansion region reduces amount of background hits
- < 100 ps timing enables better signal vs. background separation
- < 100 ps timing enables partial correction of chromatic effect
Prototype and Test Beam

How to correct for chromatic effect?

- Precision timing (< 100 ps) for propagation time
- Use dispersion effect to constrain λ

Calculation:

3.66 m long DIRC fused silica bar: \approx 1 ns difference over 300 nm to 650 nm range
Prototype and Test Beam

- Prototype has been build
- Single fused silica bar
- Spherical mirror for focusing
- Mineral oil as matching liquid (KamLAND)
- 4 Burle MCPs
 2 Hamamatsu PMTs

Test beam (≈ pions @ 10 GeV) at SLAC in Nov 04, Dec 04, Feb 05

Goals:
- validate design
- measure and correct chromatic effect