
i

UNIX DEVELOPMENT ENVIRONMENT

Basic Users Guide

16th September 2003
Last Revision: 20 December 2005

Greg White, Michael Zelazny, Kristi Luchini
SLAC, Stanford University, California, USA.

 ii

 iii

Revision History

Date Revision Description Author
09/13/03 1.0 Initial Version Greg White
09/28/03 1.1 Added Sweep Greg White
10/11/03 1.11 Modified Sweep Greg White
11/19/03 1.2 Added Developing Programs Greg White
11/23/03 2.0 Added Support for External Software Greg White
12/11/03 2.01 Corrected CVS Support for External Sw Greg White
01/23/04 2.1 Added Startup File handling Greg White
02/05/04 2.2 Added config file handling Greg White
03/15/04 2.3 Added Matlab file support Bob Hall
05/17,20/04 2.4 Added Oracle script support Judy Rock

Reference:

See also the Unix Development Environment “Principles of Design”. That document describes the design
of the mechanisms and tools described in this document.

Modifying this file:

This file is located in $CD_SOFT/html/unix/dev/ug/BUG.doc
(http://www.slac.Stanford.edu/grp/cd/soft/unix/dev/ug/BUG.doc). It is on the web at
http://www.slac.Stanford.edu/grp/cd/soft/unix/dev/ug/BUG.pdf

When modifying this file, please also create the pdf version and put it in the same directory. Both the
BUG.doc and BUG.pdf are part of the Contribute site. So, please use the Dreamweaver/Contribute check-
in/check-out facility when modifying these files so as not to step on other people’s edits.

 iv

 Table of Contents

1. PURPOSE..1
1.1. OVERVIEW ..1
1.2. SCOPE ...1

2. SETUP AND PRELIMINARIES..2
2.1. GET A USER ACCOUNT FOR AFS MACHINES...2
2.2. GET RSA AUTHENTICATED..2
2.3. LET HEPIX CONFIGURE YOUR UNIX ACCOUNT ..2
2.4. JOIN G-CD:SOFT AND G-CD:SOFT-REL-LIB ACL PROTECTION GROUPS..2
2.5. ENVS.CSH ..2

3. THE SOFTWARE RELEASE ESCALATION PROCEDURE ..3

4. DEVELOPING EPICS DISPLAYS..5
4.1. DISPLAY DIRECTORIES...5
4.2. BASIC SETUP REQUIREMENTS ..5
4.3. CVS CHECKOUT ...5
4.4. EDIT DISPLAYS..5
4.5. “MAKE” DISPLAYS..6
4.6. TESTING IN YOUR OWN DIRECTORY..6
4.7. ANNOUNCE YOUR RELEASE ...6
4.8. UPDATE CVS ..6
4.9. UPDATE MANIFEST FILE ..7
4.10. RELEASE YOUR DISPLAYS INTO THE CONTROL SYSTEM ..7

4.10.1. Release to “tst” and test...7
4.10.2. Release to "dev" and test ..8
4.10.3. Release to "new" and test ...8

4.11. RELEASE YOUR CVS RESERVATION...9
5. DEVELOPING SCRIPTS... 10

5.1. EXECUTABLE/NON-EXECUTABLE SCRIPTS .. 10
5.2. SCRIPT DIRECTORIES ... 10
5.3. BASIC SETUP REQUIREMENTS FOR SCRIPT DEVELOPMENT ... 10
5.4. CVS CHECKOUT ... 10
5.5. EDIT SCRIPTS .. 11
5.6. “MAKE” SCRIPTS ... 11
5.7. TESTING IN YOUR OWN DIRECTORY.. 11
5.8. ANNOUNCE YOUR RELEASE ... 12
5.9. UPDATE CVS .. 12
5.10. UPDATE MANIFEST FILE .. 12
5.11. RELEASE YOUR SCRIPTS INTO THE CONTROL SYSTEM... 12

5.11.1. Release to “TST” and test .. 13
5.11.2. Release to “DEV” and test... 13
5.11.3. Release to “NEW” and test .. 14

5.12. RELEASE YOUR CVS RESERVATION... 14
6. DEVELOPING PROGRAMS... 15

6.1. OVERVIEW .. 15
6.2. REFERENCES ... 15
6.3. PROGRAM FILE DIRECTORIES .. 15

 v

6.3.1. Source Code Directories .. 15
6.3.2. Executable Code Directories.. 16

6.4. BASIC SETUP REQUIREMENTS FOR PROGRAM DEVELOPMENT... 16
6.5. CVS CHECKOUT ... 16
6.6. EDIT SOURCE CODE... 16
6.7. MAKEFILES ... 16

6.7.1. The Build Specification in Makefile.Host.. 17
6.7.2. Example Makefile.Host .. 18

6.8. MAKING AND BUILDING .. 19
6.9. TESTING IN YOUR OWN DIRECTORY.. 19
6.10. ANNOUNCE YOUR RELEASE ... 19
6.11. UPDATE CVS .. 19
6.12. UPDATE MANIFEST FILE .. 20
6.13. RELEASE YOUR PROGRAM INTO THE CONTROL SYSTEM.. 20

6.13.1. Release to “TST” and test .. 20
6.13.2. Release to “DEV” and test... 21
6.13.3. Release to “NEW” and test .. 21

6.14. RELEASE YOUR CVS RESERVATION... 22
7. DEVELOPING EXTERNAL PACKAGES ... 23

7.1. OVERVIEW .. 23
7.2. REFERENCES ... 23
7.3. RELEASE SUPPORT .. 23

7.3.1. Creating Release Support for External Software .. 24
7.3.2. Test the release support makefiles .. 25
7.3.3. CVS the Release Support Files ... 26
7.3.4. Create the Reference Directory .. 26
7.3.5. Do the first release into our release areas .. 26

7.4. CVS SUPPORT FOR EXTERNAL SOFTWARE... 26
8. STARTUP FILE HANDLING.. 28

8.1. STARTUP FILES AND DIRECTORIES ... 28
8.2. TYPE I STARTUP FILES .. 28
8.3. BASIC SETUP REQUIREMENTS .. 28
8.4. CVS CHECKOUT ... 29
8.5. EDIT STARTUP SCRIPTS ... 29
8.6. “MAKE” THE STARTUP FILES.. 29
8.7. TESTING IN YOUR OWN DIRECTORY.. 30
8.8. UPDATE MANIFEST FILE .. 30
8.9. RELEASE PELIMINARIES... 30
8.10. UPDATE CVS .. 30
8.11. RELEASE YOUR SCRIPTS INTO THE CONTROL SYSTEM... 31

8.11.1. Release to “TST” and test .. 31
8.11.2. Release to “DEV” and test... 31
8.11.3. Release to “NEW” and test .. 32

8.12. RELEASE YOUR CVS RESERVATION... 32
9. CONFIGURATION FILE SUPPORT ... 33

9.1. REFERENCES ... 33
9.2. CONFIGURATION FILES AND THEIR DIRECTORIES ... 33

9.2.1. User Configuration Files Directories ... 33
9.2.2. System Configuration Files Directories.. 33

9.3. BASIC SETUP REQUIREMENTS .. 34
9.4. CVS CHECKOUT ... 34

 vi

9.5. EDIT CONFIG ... 34
9.6. “MAKE” CONFIGURATION FILES... 34
9.7. UPDATE MANIFEST FILE .. 34
9.8. RELEASE PELIMINARIES... 35
9.9. UPDATE CVS .. 35
9.10. RELEASE YOUR SCRIPTS INTO THE CONTROL SYSTEM... 35

9.10.1. Release to “TST” and test .. 35
9.10.2. Release to “DEV” and test... 35

9.11. RELEASE YOUR CVS RESERVATION... 36
10. ORACLE SCRIPT SUPPORT ... 37

10.1. BASIC SETUP REQUIREMENTS .. 37
10.2. CVS CHECKOUT.. 37
10.3. EDIT ORACLE FILE... 37
10.4. “MAKE” ORACLE FILES ... 38
10.5. UPDATE MANIFEST FILE .. 38
10.6. RELEASE PRELIMINARIES... 38
10.7. UPDATE CVS .. 38
10.8. RELEASE YOUR SCRIPTS INTO THE CONTROL SYSTEM... 38

10.8.1. Release to “TST” and test .. 39
10.8.2. Release to “DEV” and test... 39

10.9. RELEASE YOUR CVS RESERVATION... 39
11. MATLAB FILE SUPPORT .. 40

11.1. MATLAB SCRIPTS AND STANDALONE EXECUTABLES.. 40
11.2. MATLAB FILE DIRECTORIES... 40
11.3. BASIC SETUP REQUIREMENTS FOR MATLAB FILE DEVELOPMENT ... 40
11.4. CVS CHECKOUT.. 40
11.5. EDIT SCRIPTS .. 41
11.6. “MAKE” SCRIPTS ... 41
11.7. TESTING IN YOUR OWN DIRECTORY.. 42
11.8. ANNOUNCE YOUR RELEASE ... 42
11.9. UPDATE CVS .. 42
11.10. UPDATE MANIFEST FILE .. 42
11.11. RELEASE YOUR SCRIPTS INTO THE CONTROL SYSTEM... 42

11.11.1. Release to “TST” and test .. 43
11.11.2. Release to “DEV” and test... 43
11.11.3. Release to “NEW” and test .. 44

11.12. RELEASE YOUR CVS RESERVATION ... 44
12. DEVELOPING IOC SOFTWARE... 45

12.1. SETUP AND PRELIMINARIES ... 45
12.2. GETTING STUFF INTO YOUR AREA... 45

13. RELEASE ANNOUNCEMENTS ... 50
13.1. WHOM TO INFORM AND WHEN ... 50
13.2. THE RELEASE ANNOUNCEMENT EMAIL MESSAGE .. 50

14. PUTTING A DIRECTORY IN CVS .. 51
14.1. IN OUTLINE AND PREPARATION ... 51
14.2. BASIC SETUP REQUIREMENTS .. 51
14.3. CREATE OR REVIEW THE DIRECTORY TO BE IMPORTED INTO CVS ... 51

14.3.1. Importing from an Existing $CD_SOFT/ref Directory.. 51
14.4. IMPORT THE DIRECTORY.. 51

 vii

14.5. CHECK THE REFERENCE DIRECTORY.. 52
14.6. CHECK RELEASING STILL WORKS.. 52

15. CONVERTING SOFTWARE TO NEW RELEASE SUPPORT.. 53
15.1. BASIC SETUP REQUIREMENTS AND PRELIMINARIES .. 53
15.2. CVS CHECKOUT.. 53
15.3. CONVERT MAKEFILES .. 53
15.4. RELEASE USING THE NEW SCHEME ... 53

16. SWEEP .. 55
16.1. SWEEP PROCEDURE ... 55

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

1

1. Purpose
The purpose of this document is to describe how to develop controls software in the Unix environment of
the SLAC accelerator complex.

1.1. Overview
This document describes, for a programmer, how to check software out of cvs, modify it,
build it (such as compile, link etc), put it back into cvs, compile it in our shared areas, and
then release it through a progressive escalation procedure that helps to stage the release of
code.

1.2. Scope
At the time of writing, we are in a transitionary period regarding the development
environment. This document describes the “new” development environment, whose code,
displays, scripts and so on, are based under /afs/slac/g/cd/soft/ ($CD_SOFT). There is
another existing environment and directory area for code, displays and scripts, under
/afs/slac/g/pepii/. This document does not deal with development of that. The distinction
is described further in Overall Requirements and Design of the Unix Development
Environment
Presently the following are supported by the new development environment described
here:

1. EPICS displays (dm and dm2k). See chapter 3
2. shell scripts, both “non-executable” (by source in csh or ./ in sh), and

“executable” (those run in a sub-process) by just typing their name. See chapter
5

3. “Programs”. As you’d expect, applications, libraries and utilities built from
source code. See chapter 6.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

2

2. Setup and Preliminaries
This chapter describes how to set yourself up for developing Unix hosted controls software for the SLAC
accelerator complex.

2.1. Get a User Account for AFS machines
If you do not already have a SLAC Unix Account (which allows you to log in to such
machines as “flora”, then this is the first step. See:
http://www2.slac.stanford.edu/comp/slacwide/account/account.html

2.2. Get RSA authenticated
In order to use the automatic software distribution mechanism, one needs to use ssh
authentication to access the production accounts on the production hosts. See:
http://www.slac.stanford.edu/grp/cd/soft/unix/dev/slaconly/rsasetup.html In particular
you must follow the instructions for RSA authentication to the cddev account on
production machines (the second of authorized key file edits).

2.3. Let HEPiX configure your Unix account
HEPiX is the new mechanism by which all user accounts at SLAC are being configured
with the basic environment variables. See:
http://www.slac.stanford.edu/grp/cd/soft/unix/slaconly/hepix.html .

2.4. Join g-cd:soft and g-cd:soft-rel-lib ACL protection groups
The Unix controls system release directories are protected by Access Control Lists. In
order to release software you must be a member of g-cd:soft and g-cd:soft-rel-lib
protection groups. Ask a member of their owning group, g-cd, to add you to those groups
(type >pts mem g-cd on an AFS host to see who is a member of g-cd). Use the same
“pts mem” command to see if you’re already a member of those groups. For more
information on these protection groups, and additional groups protecting specific kinds of
file, see the Principles of Design document, Ch 3.

2.5. ENVS.csh
The tcsh script $CD_SOFT/dev/script/ENVS.csh sets up development and runtime
environments, on both “development” (AFS, like flora) and “production” (NFS, like
opi00gtw00) machines. You need to source this file before proceeding with any work
described in this document. You may consider adding this to your .cshrc.
source /afs/slac/g/cd/soft/dev/script/ENVS.csh

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

3

3. The Software Release Escalation Procedure
This short chapter summarizes the sequence of events in a software release escalation in the framework of
software development environment described in the rest of this document.
When software is “released” it goes through a multiple stage system of being, first committed back to the
CVS code management system, then built (compiled and linked), and then moved through three levels
equivalent to “alpha”, “beta” and “production” release. These last three release levels are implemented
simply by moving the executables to different directories, so they can be tested by changing the appropriate
PATH. The overall process is summarized in Table 1. This basic sequence is employed repeatedly in the
following pages.

Table 1: Where files are moved to during Release. The diagram shows schematically the five basic
stages of release (left hand side), and at each stage what happens to the files and to where they are

copied.

DEVELOPMENT (AFS, eg flora) PRODUCTION (NFS, eg gateways)
$CD_SOFT/cvs/
 gui/
 common/
 app/

Not applicable

 $CD_SOFT/ref/
 gui/.../O.solaris
 common/.../O.solaris
 app/.../O.solaris
 $CD_SOFT/tst/
 disp/
 script/
 sun4-solaris2/

Not applicable

$CD_SOFT/dev/
 disp/
 script/
 sun4-solaris2/

$CD_SOFT/dev/
 disp/
 script/
 sun4-solaris2/

$CD_SOFT/new/
 disp/
 sun4-solaris2/

$CD_SOFT/new/
 disp/
 sun4-solaris2/

$CD_SOFT/prod/
 disp/
 sun4-solaris2/

$CD_SOFT/prod/
 disp/
 sun4-solaris2/

$CD_SOFT/bck/
 disp/
 sun4-solaris2/

Not applicable

All
excutables

All
excutables

All
excutables

All
source and
object

All
gateway
executables

All
source

cvs commit

gmaketst

build

distribution

~/work/...

gmakedev
install

install

gmakenew
install

distribution

sweep

install
distribution

copy to bck

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

4

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

5

4. Developing EPICS Displays

This chapter describes how to create or modify EPICS displays. It covers the basic setup requirements,
where the relevant files reside in the development file-system, how to create or checkout display files from
CVS, and how to release changes back into the control system.

4.1. Display directories
The EPICS displays are kept in CVS in modules stemming from “gui/disp/config/”.
Therefore the reference directories are under $CD_SOFT/ref/gui/disp/config/.
The release directory for displays is “disp” (i.e.
$CD_SOFT/{ref,dev,new,prod}/disp/.)

4.2. Basic Setup Requirements
This procedure assumes the following environment variables are setup: CD_DISP,
CD_SOFT, CD_DISP_CFG, EPICS_DISPLAY_PATH, and CD_SCRIPT. If your login
process has not already done so, you can setup the environment with source
/afs/slac/g/cd/soft/dev/script/ENVS.csh.

Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh

4.3. CVS Checkout
From your own working directory (e.g. ~/work), do a cvs checkout of the display or
displays you want to edit. For instance, the following would check out those displays in
the tarf directory of EPICS displays (see 4.1):
cvs checkout gui/disp/config/tarf
The following checks out only the display whizzbang.adl
cvs checkout gui/disp/config/tarf/whizzbang.adl1

Then cd down to the directory containing the files you checked out (cd
gui/disp/config/tarf if the above example). From the checkout directory, you can do more
CVS commands pertaining to that directory, e.g. cvs checkout
anothertarfdisplay.adl.
After cding down, you may want to do a gmake now, just to check you got everything
you need to do a build:
gmake

4.4. Edit Displays
Presently we edit EPICS displays with edd, e.g.:
edd whizzbang.adl

Note that, by default edd creates a .dl file, but our standard is to create .adl files for every
display, and then compile the adl files into dl using an adl-to-dl compiler. Therefore,

1 Remember that to build executables, such as dl files from adl files you will need the makefiles of their directory, so if
you do check out only one display you will also need to checkout Makefile and Makefile.Host from the same directory.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

6

from edd, you must create the .adl file and then run the Makefile to create the dl file. To
create the .adl file, right-mouse-click (MB3), and select “report display”.

4.5. “Make” Displays
Having edited your displays, you must now compile them (adl-to-dl). The list of displays
to be “made” are listed in Makefile.Host. Therefore, if you have created a new new
display, add a line in Makefile.Host. Add to the dmDISPS line for a dm display, or add a
DISPS line for a dm2k display:
emacs Makefile.Host

Having updated the Makefile.Host for new displays, you are ready to build. Just issue
gmake in the directory you checked out:
gmake

gmake automatically creates a .dl file for dm displays in a subdirectory named /O.solaris.
Additionally it installs the displays (dl and adl) into a directory named “disp”, which, if it
doesn’t exist already, it will create in the directory from which you checked out the
displays. In the above example that would be ~/work/disp.
If you have only checked out some subset of the displays in a CVS directory, or you want
only to build some subset of the displays in your checkout directory, then you have to tell
gmake which ones they are by overriding the definitions of the dmDISPS and DISPS
macros in Makefile.Host on the gmake command line: gmake
dmDISPS=whizzbang.dl DISPS=.

4.6. Testing in your own directory
To test (with dm or dm2k), first put your “disp” directory in your
EPICS_DISPLAY_PATH. E.g:
setenv EPICS_DISPLAY_PATH ${HOME}/work/disp:${!#:1}

dm whizzbang.dl

When you have finished testing, it’s a good idea to remove ~/work/disp from your EPICS
display path, since future invocations of displays will look there rather than the standard
release directories, and where you thought you were testing released software, you will in
fact be running hat’s in your test directory.
delpath EPICS_DISPLAY_PATH ${HOME}/work/disp2

4.7. Announce your Release
Before starting your release, don’t forget to send email to sw_release, (see 6 below for
checklist).
Also, inform the control room associated with the release you are making.

4.8. Update CVS
If you have created a new display (one that wasn’t previously in CVS), you have to tell
CVS about it:
cvs add mynewdisplay.adl

2 Don’t try to use the ~ form for specifying your home directory in path manipulation aliases like delpath, because ~ is
not expanded by the shell before being used in alias macro replacement. Use ${HOME} instead.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

7

Before putting your changed files into CVS (cvs commit), it’s a good idea to check that
noone else has changed the same files you changed while you had them checked out. To
do that, you can do a cvs status. If files have changed in the repository since you
have checked them out you can do a cvs update; CVS will mark any files that were
modified by someone else with an M. If it was able to merge your changes into their
changes it will stop there. If it couldn’t do the merge, it will report “conflicts during
merge”.
When you’re sure of all your edits, commit your changes back to CVS:
cvs commit

4.9. Update Manifest File
Those displays from the directory which are normally run on “production” machines (i.e.
gateways like opi00gtw00) have to be listed in the directory’s manifest file. This file lists
all the files which the distribution system must export over to the production machines
for you. So, if you have added a new display, and it must be run on a gateway, then you
will have to edit the file named manifest, and add a line naming each file to be
exported to it. For EPICS displays each line must be of the form disp/<filename> because
EPICS displays are always installed into a subdirectory named “disp”.
We normally export both the adl and dl file to production machines, so make sure to add
a line for both the .adl & .dl files of dm displays:
emacs3 manifest

If no manifest file exists for the directory, you will have to create one and add it to CVS
(cvs add manifest).

4.10. Release your displays into the Control System
Release is a three stage process. You will first release only to development machines,
then to both development and production machines (but to a place on production
machines which is not known by any other EPICS display – that is, not on the production
EPICS_DISPLAY_PATH), and finally to the production area of both development and
production machines. Only at this last stage will a user starting a new display see your
changes. You use the first two stages to test your changes.
All three of these release stages are managed by a script that will ask you for your
password and verify that you have the unix privilege to make the release. They will also
ask you why you are making the release, and log your reply. The log is in
$CD_SOFT/log/release.log, which is on the web at
http://www.slac.stanford.edu/grp/cd/soft/log/release.log.

4.10.1. Release to “tst” and test
The first stage of release is “tst” and is performed by the command “gmaketst”.
It involves compiling the new dm displays, and installing all changed dl and adl
files into $CD_SOFT/ref/disp/. For instance, to release files you changed in
CVS directory gui/disp/config/tarf, you would just issue:
gmaketst gui/disp/config/tarf

To test the display in this first stage of release, first add the tst release directory
to the EPICS_DISPLAY_PATH, then invoke dm or dm2k

3 Any editor will do the job of course. Emacs is common but complicated. Some unix programmers prefer vi, which
can be confusing too. A very simple editor on all unix systems is called pico.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

8

setenv EPICS_DISPLAY_PATH ${CD_SOFT}/ref/disp:${!#:1}

dm whizzbang.dl &

Remember to remove $CD_SOFT/ref/disp from your
EPICS_DISPLAY_PATH when you have finished testing:
delpath EPICS_DISPLAY_PATH ${CD_SOFT}/ref/disp

4.10.2. Release to "dev" and test
The next stage of release is “dev” with gmakedev. This stage releases the
displays now in $CD_SOFT/ref/disp to $CD_SOFT/dev/disp/. On development
machines, since $CD_SOFT/dev/disp/ is in the default
EPICS_DISPLAY_PATH of users on development machines (who have setup
to use the new development environment) any display which is released to this
level will be the default display which comes up for those users.
Files at the dev level of release are also deployed to the production machines
(into $CD_SOFT/dev/disp/ on production). Unlike on development machines
though, on production machines $CD_SOFT/dev/disp is NOT in the default
EPICS_DISPLAY_PATH of control system processes. That fact is useful for
testing your display on production, with production data, without actually
releasing it to production. To test your display on production while it is at the
dev level of release you have to add it to the EPICS_DISPLAY_PATH of a
production login by hand.
For instance, say you had changed a display in gui/disp/config/pepii/
gmakedev gui/disp/config/pepii

This may take some time to complete, so give it some time.
Take time to test your release at this stage. First test on development; remember
that $CD_SOFT/dev/disp is already in the default EPICS_DISPLAY_PATH
on development, so you don’t need to add it. Then log into a production
machine, like opi00, add $CD_SOFT/dev/disp to the EPICS_DISPLAY_PATH,
and start the display you changed: E.g.:
ssh –X –l cddev opi00gtw00

cddev> setenv EPICS_DISPLAY_PATH
$CD_SOFT/dev/disp:${!#:1}

cddev> dm pepiimain &
If you have time then, it’s a good idea to leave your displays at “dev” for a day
or two before you do a “new” release, so they can be tested by other people on
development before being fully released.

4.10.3. Release to "new" and test
The last level of release a developer is concerned with is “new”, done with
gmakenew. This stage releases the displays you changed now in
$CD_SOFT/dev/disp to $CD_SOFT/new/disp/. $CD_SOFT/new/disp/ is in the
default EPICS_DISPLAY_PATH of all users of on both development and
production machines, so any display which is released to this level will be the
default display which comes up on both development and production. So, there
is no need to change the EPICS_DISPLAY_PATH to get changes released to
new.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

9

After testing your display in dev, (go back to a development machine if you had
logged into production to make your test), issue, for instance:
gmakenew gui/disp/config/pepii
Test your new displays with dm or dm2k, either on the development
host, or on the production host, or both. You can restart the display on
production from the SCP if there is a button for doing so. Or:
ssh –l cddev –X opi00gtw00 dm whizbang.dl

This marks the end of the release sequence that a developer goes through. Once a week or
so, all displays that are in the "new" stage of release, are "swept" to "prod". The sweep is
done for all software presently in new by one designated person, typically after the
Monday morning meeting. The sweep procedure sends email to sw_release when it’s
done.

4.11. Release your cvs reservation
cd back up to your working directory (ex. ~/work). Then give up your CVS checkout
with cvs release:
cvs release gui

Finally rm -fr gui to cleanup your work space and avoid confusion - cvs never
deletes anything!

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

10

5. Developing Scripts
This chapter describes how to introduce and edit shell scripts into the unix control system. It covers the
distinction between executable and non-executable scripts made in the unix control system, where scripts of
both kinds are kept, and the basic setup pre-requisites for editing and running scripts.

5.1. Executable/non-executable scripts
Non-executable scripts in all shells in general, are those which are executed in the same
process as the executer, so that they use and modify the same environment. Put simply,
scripts which you “source” are “non-executable”. Remember though, the “source” unix
command is only in csh shell and derivatives, like tcsh, which is the default shell at
SLAC. But in sh for instance, in-process shell script execution is done through a different
syntax. In sh they are invoked by ./<script-name>.
Executable scripts are those which are executed in a sub-process of the caller’s process.
They are called by just typing the script’s name. The x NIS bits of an executable script
must be on (even if it’s in AFS, otherwise the PATH hashing system won’t recognize it).
Remember, if the script is executable (if it's not sourced, but run by just typing its
filename (in csh)), then it should have the #!/bin/sh –f line at the top to specify
which shell it should execute in; but if it is sourced it should not have that line, because
sourced scripts just execute in the csh shell instance they're sourced from, by definition.
Also, executable scripts should not be given a filename extension (like .sh). However, if
the script is non-executable, then our standard is that its filename should include an
extension giving the shell name, e.g. .csh.

5.2. Script Directories
Scripts may be put in any CVS directory, but many are in directories under common/
for instance, $CD_SOFT/ref/common/tool.
The release directories are:

1. solaris/bin/, is the release dir for executable scripts (i.e.
$CD_SOFT/{tst,dev,new,prod}/solaris/bin/).

2. script/, is the release dir for non-executable scripts. Non-executable scripts are
only released to tst and dev. (i.e. $CD_SOFT/{tst, dev}/script/).

5.3. Basic Setup Requirements for Script Development
If your login process has not already done so, you can setup the environment with
source /afs/slac/g/cd/soft/dev/script/ENVS.csh.

Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh

5.4. CVS Checkout
From your own working directory (ex. ~/work) check out the cvs module in which the
script you want to modify is located, or to which you want to add a script. For example:
cvs checkout common/tool
The following would check out only the script “trimfile”:

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

11

cvs checkout common/tool/trimfile

To manage the release of scripts you will need the makefiles from their directory, so if
you do check out only one or two scripts by name, you will also need to additionally
checkout Makefile and Makefile.Host from the same directory.
Then cd down to the directory containing the files you checked out (cd common/tool if
the above example). From the checkout directory, you can do more CVS commands
pertaining to that directory, e.g. cvs checkout InstallDev.csh.

5.5. Edit Scripts
Edit the file you want to change, or create a new script. If you a create a new script,
remember to add the standard csh or sh header from
$CD_REF/common/stds/unix/header/.
Don’t forget the #!/bin/sh at the top of an sh (bourne shell) executable script. Don’t
put it in if the script is intended to be sourced (that is, “non-executable”), partly because it
has no meaning in a sourced script, and partly because there is no other way to tell how a
script should be run.

5.6. “Make” scripts
The scripts in each directory must be listed in macro definitions in the directory’s
Makefile.Host file. Therefore, if you add a new script, you must update Makefile.Host to
add a SCRIPTS line or SCRPTS line. Add executable scripts to SCRIPTS, and non-
executable scripts to SCRPTS. Just write a line of the form SCRIPTS += filename
for every file you are adding.
Having updated the Makefile.Host for new scripts, you are ready to build. Just issue
gmake in the directory you checked out:
gmake

gmake moves executable scripts to a subdirectory named /O.solaris. Additionally it
installs the scripts into a test install directory. Executable scripts will be installed into a
local directory named “<host-architecture>/bin/ with the right NIS bits set. On our AFS
Solaris development machines, extending the above example, that would be ~/work/sun4-
solaris2/bin/. Non-executables will be installed into a local directory named “script”, for
instance ~/work/script/. Note the location of the install directories, off the directory from
which you did the cvs checkout, not subdirectories of the checkout directory itself.
If you have only checked out some subset of the displays in a CVS directory, or you want
only to build some subset of the scripts in your checkout directory, then you have to tell
gmake which ones they are by overriding the definitions of the SCRIPTS and SCRPTS
macros in Makefile.Host on the gmake command line: gmake SCRIPTS=trimfile
SCRPTS=

5.7. Testing in your own directory
To test executable scripts, first put the install directory at the head of your PATH. E.g.
setenv PATH ~/work/sun4-solaris2/bin:${PATH}

Test your script.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

12

5.8. Announce your Release
Before starting your release, don’t forget to send email to sw_release, (see 6 below for
checklist).

5.9. Update CVS
If you have created a new script (one that wasn’t previously in CVS), you have to tell
CVS about it before you can cvs commit it (see below):
cvs add mynewscript

Before putting your changed files into CVS (cvs commit), it’s a good idea to check that
no-one else has changed the same files you changed while you had them checked out. To
do that, do a cvs update. CVS will mark any files that were modified by someone
else with an M. If it was able to merge your changes into their changes it will stop there.
If it couldn’t do the merge, it will report “conflicts during merge”. To track down who
has done what, use cvs status.
When you’re sure of all your edits, commit your changes back to CVS:
cvs commit

5.10. Update Manifest File
Those scripts from the directory which are normally run on “production” machines (i.e.
gateways like opi00gtw00) have to be listed in the directory’s manifest file. This file lists
all the files which the distribution system must export over to the production machines
for you. So, if you have added a new script, and it must be run on a gateway, then you
will have to edit the file named manifest, and add a line naming each file to be
exported to it.
For executable scripts, each line must be of the form <host-architecture>/bin/<filename>.
The host architecture is normally solaris on AFS machines, so for example trimfile’s
entry in common/tool’s manifest file is solaris/bin/trimfile.
For non- executable scripts each line must be of the form script/<filename>. E.g.
script/ENVS.csh.
emacs4 manifest

If no manifest file exists for the directory, you will have to create one and add it to CVS
(cvs add manifest).

5.11. Release your scripts into the Control System
Release is a three stage process. You will first release only to development machines,
then to both development and production machines (but to a place on production
machines which is not known to other scripts on production – that is, not on the
production PATH – and therefore does not affect the running controls system), and
finally to the production area of both development and production machines. Only at this
last stage will a user or process starting the script on production see your changes. You
use the first two stages to test your changes.
All three of these release stages are managed by scripts that will ask you for your
password and verify that you have the unix privilege to make the release. They will also
ask you why you are making the release, and log your reply. The log is in

4 Any editor will do the job of course. Emacs is common but complicated. Some unix programmers prefer vi, which
can be confusing too. A very simple editor on all unix systems is called pico.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

13

$CD_SOFT/log/release.log, which is on the web at
http://www.slac.stanford.edu/grp/cd/soft/log/release.log.

5.11.1. Release to “TST” and test
The first stage of release is “tst” and is performed by the command “gmaketst”.
It moves non-executable scripts from their CVS reference directory to their tst
release directory $CD_SOFT/tst/script/, and executable scripts to their
tst release directory $CD_SOFT/tst/solaris/bin/ (it also sets the NIS
“x” bit of executable scripts). For instance, to release scripts which you changed
in CVS directory common/tool, you would issue:
gmaketst common/tool5
To test executable scripts, remember, the default value of PATH does not
include $CD_SOFT/tst/solaris/bin/.This is so that you can release
your script, but without it yet being used by other people. So, to test your
changes you have to add the tst directory to your PATH:
setenv PATH ${CD_SOFT}/tst/solaris/bin:${PATH}

If you added a new executable script, you may have to rehash:
rehash

Then just type the executable script’s file basename. For instance to test trimfile:
trimfile

To test non-executable csh shell scripts, source them from the tst directory. For
instance to test a new version of ENVS.csh:
source $CD_SOFT/tst/script/ENVS.csh

5.11.2. Release to “DEV” and test
The second stage of release is “dev” and is performed by the command
“gmakedev”. It escalates non-executable scripts from their tst release directory
to their dev directory, $CD_SOFT/dev/script/, and executable scripts
from their tst release directory to their dev directory,
$CD_SOFT/dev/solaris/bin/.E.g.:
gmakedev common/tool
On development hosts, the dev directory of executable scripts is already in the
default PATH, ahead of the new and prod directories (see below). This is so you
can release to a public place on the development machines and colleagues can
test your changes before you release them to production. So, everyone using a
development machine will now be using your release, and to test a script you
only need to rehash, and then just type its file basename. E.g.:
rehash

trimfile
Additionally, gmakedev checks which of the files which were changed or added,
are also listed in the manifest file, and exports those over to production for you.

5 You can issue the gmaketst <directory> command from anywhere, such as your working directory. Alternatively, you
can cd to the reference directory (like $CD_SOFT/ref/common/tool), and just type gmaketst without the directory
arg.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

14

On production hosts, the dev directory of executable scripts is deliberately NOT
in the default PATH. So if you want to test the script on production, log in,
change the PATH to include dev, and run the script. E.g.:
ssh –X –l cddev opi00gtw00

cddev> setenv PATH ${CD_SOFT}/dev/solaris/bin:${PATH}

cddev> rehash; trimfile

To test non-executable csh shell scripts, on either development or production
hosts, just source them from the dev directory just as from the tst directory.
DEV is the final level of release for non-executable scripts. However,
executable scripts must also be released to NEW, and go through the "sweep"
procedure.

5.11.3. Release to “NEW” and test
The last stage of release that a programmer does, is “NEW”. NEW is performed
by the command “gmakenew”. It escalates executable6 scripts from the DEV
directory for executables, to the NEW directory for executables:
$CD_SOFT/new/solaris/bin/..E.g.:
gmakenew common/tool
The NEW directoryis in the default PATH of all users on both production and
development nodes. So, you don’t need to add anything to the PATH to test your
changes or for anyone else to test them.
You should test your changes on production, even if they worked at the
development level, before you go on to new things.
From development you can execute a script on production with ssh, for instance
to test trimfile:
ssh –l cddev –X opi00gtw00 {rehash; trimfile}

This marks the end of the release sequence that a developer goes through. Once a week or
so, all software which is at the "new" stage of release, is "swept" to "prod". The sweep is
done for all software presently in new by one designated person, typically after the
Monday morning meeting. The sweep procedure sends email to sw_release when it’s
done.

5.12. Release your cvs reservation
cd back up to your working directory (ex. ~/work). Then give up your CVS checkout
with cvs release. Note that cvs release requires that the argument is precisely the same
argument as was used to do the cvs checkout.
cvs release common/tool

Finally rm -fr common/tool to cleanup your work space and avoid confusion - cvs
never deletes anything! If you have reserved other directories higher up the directory
hierarchy, don’t delete those too by accident.

6 Note that non-executables don’t go to the NEW level, their release journey ends at DEV

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

15

6. Developing Programs
This chapter describes how to add, and change, compiled programs that we write for the host side of the
unix based control system. Front-end (IOC) control programs we write, and 3rd party software, are
described elsewhere.
More specifically, this chapter deals with programs which are built and released using the Software
Group’s makefile system. The next chapter deals with how to release external packages and 3rd party
software, which is more formally understood as software not built by our makefile system, but whose
release is still done using our release management system7.

6.1. Overview
Programs are written, debugged and tested, as far as they can be, on “development”
machines. These are roughly speaking the “AFS” or “Taylored” machines like the flora
cluster. A framework for makefiles is used to build the programs, whose aim is that a
developer need only “fill-in-the-blanks” in a makefile to construct a complete build
specification. Once tested, only the necessary executable images (self contained
programs, executable libraries etc) are copied from the development machines to
“production” machines to run the accelerator. The copying is done automatically, to the
right place, as part of the release support described below.

6.2. References
For details about the control system development environment design, and how the
following fits into the general scheme, see the first couple of chapters of the Principles of
Design document. For a description of the Makefile system, and Release Support, see
later chapters.
For a description of the EPICS IOC applications makefile system, on which our makefile
system is based, see the EPICS document IOC Software Configuration Management. Our
system was based on the R3.13.6 version of IOC Configuration makefiles.
For the list of recognized makefile macros which a developer uses to specify a build, such
as PROD, SRCS, USR_LDFLAGS and so on, see specifically the IOC Software
Configuration Management part 4.3 Description of Makefiles8,

6.3. Program File Directories
This section outlines the important AFS file-system directories used for control system
program development.

6.3.1. Source Code Directories
All program source code is kept in sub-directories of the two directories
$CD_SOFT/ref/app and $CD_SOFT/ref/util. Following the basic
correspondence principle of all our software, the CVS repository modules are
therefore $CD_SOFT/cvs/app/ and util/. Any new program should be created in
a new subdirectory of one of these two:

7 The word “program” is used generally to include both “applications”, which are understood loosely as high level,
often interactive programs, and “utilities”, which are low level tools and foundational software. The word “package” is
used specifically for program suites in /afs/slac/package/.
8 http://epics.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManuals/iocScm-
3.13.2/buildingComponents.html#DescriptionOfMakefiles

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

16

1. app/. This is for applications (high level, particularly interactive,
programs or suites).

2. util/. This is for software utilities, toolkits, frameworks and libraries.
This chapter will describe how to modify and build code in those directories,
and release it into the running control system. For help in getting a new
program’s code and release support files into those directories see chapters 14
and 15 respectively.

6.3.2. Executable Code Directories
Most of our host side unix software runs on Solaris hosts, so executables are
released by the procedure described below, are placed into
$CD_SOFT/{ref,dev,new,prod}/solaris/bin/).
The directories $CD_SOFT/new/solaris/bin and $CD_SOFT/prod/solaris/bin are
in the default PATH on production hosts. $CD_SOFT/dev/solaris/bin is
additionally in the PATH, preceding the other two, on development hosts.

6.4. Basic Setup Requirements for Program Development
If your login process has not already done so, you need to setup the development
environment with source /afs/slac/g/cd/soft/dev/script/ENVS.csh.
Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh

6.5. CVS Checkout
From your own working directory (ex. ~/work) check out the cvs module in which the
program you want to modify is located, or to which you want to add9. For example:
cvs checkout util/alh_hrtbeat_mon
Then cd down to the directory containing the files you checked out (cd
util/alh_hrtbeart_mon extending the above example). You may want to immediately run a
gmake, to make sure the checked-out program builds: just
gmake

6.6. Edit Source Code
Edit the source files you want to change, or create new ones. If you create new ones,
remember to add the standard headers to them, from templates in
$CD_REF/common/stds/unix/header/.

6.7. Makefiles
Programs we develop ourselves for ourselves (as opposed to 3rd party packages we adapt,
and packages we develop for possible outside consumption - both of which are discussed
in the next chapter), use a variation of the EPICS makefile system we have developed, to
define the build. The makefile system can build for a number of target platforms, and is

9 Unlike on VMS, in the unix development environment it does not make much sense to CVS checkout only a single
source file, even when that is the only one you want to modify. That’s because the makefiles want to check whether
any source file has been touched, so they search the build directory for all the source files mentioned in the makefile,
and they’ll complain if those files aren’t found.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

17

intended to provide a level of compiler and linker consistency across all our programs.
Additionally, the makefiles manage software release through the release directories.
The makefile framework files (sometimes confusingly called “config” files), are in
$CD_SOFT/ref/common/make/. See the references above for help with those files, and
the list of supported macros used to define builds in the system.
The idea is a program only needs two short makefiles in its directory to use this system. It
must have a very short file named Makefile in each directory, whose basic job is just to
define the subdirectories to be searched for source code to build, and it must have a
Makefile.Host in each source code subdirectory. If your program is simple, and you just
have a single directory, so it contains the source code, then you’ll have both these two
makefiles in that directory:

Makefile: This file is necessary, but you only need to change it from the
template to add DIRS specifications for each source code subdirectory of your
program.
Makefile.Host: This specifies the build.

You can find templates of these in $CD_REF/common/stds/unix/template/.

6.7.1. The Build Specification in Makefile.Host
The build specification in Makefile.Host won’t look like the familiar target/pre-
requisite rules you may be used to seeing in makefile. All the build rules have
been predefined, leaving only the variables, the file-names themselves, plus
maybe a few complier and linker options, to be defined by you. The variables
are defined by a set of recognized make macros, which you write in
Makefile.Host.
The complete set of recognized macros is in the IOC Configuration
Management document, part 4.3, “Defining Makefiles” (see references above).
However, the simplest example would be just to use:

PROD : This defines the name of executable to produce
SRCS : This defines the list of source files which must be complied and
linked together to produce <PROD>.
PROD_LIBS : The (non-system) libraries needed to link <PROD>.

Take the simple example of the alh_hrtbeat_mon utility which you can extend10.
$CD_SOFT/ref/util/alh_hrtbeat_mon/Makefile.Host defines how to build it
using just:

PROD = alh_hrtbeat_mon

SRCS = alh_hrtbeat_mon.cc

PROD_LIBS = cmlogb

 Figure 1: Makefile.Host guts to build alh_hrtbeat_mon

6.7.1.1. Linking to Libraries

Note that, alh_hrtbeat_mon needs a number of libraries, both system, and user
(cmlog11). All the basic system libraries are already in the default link line (see

10 Although you can add to the compiler and linker options which will be used, by defining CFLAGS, CXXFLAGS
(for c++) and LDFLAGS and so on, don’t do that unless there’s a good reason not to modify their default definitions in
$CD_SOFT/ref/common/make/CONFIG*.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

18

the definition of ARCH_DEP_LDLIBS), so there was no need to override that
or USR_LIBS to supply libraries such as X11, thread, nal, socket etc, to the link.
The cmlog library is supplied by defining PROD_LIBS – libraries required for
linking <PROD>.
Additionally, you should avoid specifying libraries explicitly anyway because
all the libraries we use should be the dynamically linked kind (entered at run-
time), usually named libsomething.so on Solaris systems, which should all be on
the LD_LIBRARY_PATH. Avoid using .a (archive) libraries, which create
static and therefore inline code, since it means restarting the executable when
changing library code. And only use the USR_LDFLAGS for giving link
options, not for specifying libraries.

6.7.1.2. Which C++ Compiler?

Both the GNU g++ and Solaris CC compilers are supported by the makefile
framework, but the support for GNU g++ is far the most sophisticated. You have
to specify which you wan to use for compiling .cc source code using
CPLUSPLUS (there is no default setting!). For CC, you additionally have to say
which is the default pedantry (CXXCMPLR).

6.7.1.3. Precompile, Compile, and Link options

Don’t confuse precompile, compile, and linker options when setting your own
values of the makefile macros. For inatance, -D, which creates a #define for the
compile is a precompiler option specified in USR_CPPFLAGS. –I tells the
precompiler where to look for include files (but USR_INCLUDES should be
used for that in preference to USR_CPPFLAGS). These should not be put in the
compiler options (USR_CFLAGS and USR_CXXFLAGS), or linker options.

6.7.2. Example Makefile.Host
So, the whole Makefile.Host for alh_hrtbeat_mon looks like this:

TOP = ../../..
INCMK=$(CD_COM_MAKE)
include $(INCMK)/CONFIG_BASE

#--
ADD MACRO DEFINITIONS AFTER THIS LINE

Specify which c++ compiler, CCC is defined as CC.
CPLUSPLUS = CCC
CXXCMPLR = NORMAL

Executable script, sets environment for execution
SCRIPTS += alh_hrtbeat_mon.csh

Build products
PROD = alh_hrtbeat_mon

Sources
SRCS = alh_hrtbeat_mon.cc
SRCS += myaddition.cc

Preprocessor (includes, macro definitions)

11 Recall that on unix, library filename’s are always libsomething.so (for a dynamic lib) and libsomething.a (for a static
lib), but the lib part is dropped in –l link specifications, so you write only “gcc -o myprog src.c –lsomething” to
compile and link myprog using libsomething.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

19

USR_CPPFLAGS = -D_CMLOG_BUILD_CLIENT
cmlog hasn’t released include files to $CD_SOFT/ref/include, so;
USR_INCLUDES = -I$(CMLOG)/new/include

Libraries needed
PROD_LIBS = cmlogb

include $(INCMK)/RULES.Host
#--
ADD RULES AFTER THIS LINE

 Figure 2: Example Makefile.Host for the simplest program

6.8. Making and Building
Having updated the Makefile.Host, you are ready to build. Just issue gmake in the
directory you checked out:
gmake

gmake looks for the makefile “Makefile”, and scans the Makefile.Host of each directory
in which it finds a Makefile, and every directory specified by a DIRS macro in each
Mkaefile. The scan is to determine which unix host types must be built for to make the
PRODs of each Makefile.Host. It then creates an O.<host-type> subdirectory for each of
those host types, and executes the Makefile.Host in that directory. For our Solaris based
control system, that basically just means the compiling and linking will be done in a
subdirectory named /O.solaris. Executables, the build PRODucts, will be installed into a
local directory named “<host-architecture>/bin/ with the right NIS bits set. On our AFS
Solaris development machines, extending the above example, that would be ~/work/sun4-
solaris2/bin/. Note the location of the install directories, off the directory from which you
did the cvs checkout, not subdirectories of the checkout directory itself.

6.9. Testing in your own directory
To test executable, first put the install directory at the head of your PATH. E.g.
setenv PATH ~/work/sun4-solaris2/bin:${PATH}

rehash

Test your program. For instance extending the alh_hrtbeat_mon example, having put the
bin directory in the PATH, just type:
alh_hrtbeat_mon

6.10. Announce your Release
Before starting your release, don’t forget to send email to sw_release, (see 13 below for
checklist).

6.11. Update CVS
If you have created a new source file (one that wasn’t previously in CVS), you have to
tell CVS about it before you can cvs commit it (see below):
cvs add myaddition.cc

Before putting your changed files into CVS (cvs commit), it’s a good idea to check that
no-one else has changed the same files you changed while you had them checked out. To
do that, do a cvs status. If any are not “Up-to-date”, cvs update, CVS will mark

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

20

any files that were modified by someone else with an M. If it was able to merge your
changes into their changes it will stop there. If it couldn’t do the merge, it will report
“conflicts during merge”. When you’re sure of all your edits, commit your changes back
to CVS:
cvs commit
We have modified cvs commit so it immediately automatically updates the reference
directory files whenever a change is made to CVS.

6.12. Update Manifest File
The names of programs which are normally run on “production” machines (i.e. gateways
like opi00gtw00) have to be listed in the directory’s manifest file. The manifest file lists
all the files which the distribution system must export over to the production machines
for you. So, if you have added a new executable (a new PROD to a Makefile.Host), and it
must be run on a gateway, then you will have to edit the file named manifest, and add
a line naming each file to be exported to it.
For executables each line must be of the form <host-architecture>/bin/<filename>. The
host architecture is normally solaris on AFS machines, so for example alh_hrtbeat_mon’s
entry in util/alh_hrtbeat_mon/manifest file is solaris/bin/alh_hrtbeat_mon
Any non-executable shell scripts which are used to set up the environment or run the
executable, or it’s boot st file, should also be added to the manifest. For non- executable
scripts, each line must be of the form script/<filename>. E.g.
script/myscript.csh.
emacs12 manifest

If no manifest file exists for the directory, you will have to create one and add it to CVS
(cvs add manifest).

6.13. Release your program into the Control System
Release is a three-stage process. You will first release only to development machines,
then to both development and production machines (but to a place on production
machines which is not known to other programs running on production – that is, not on
the production PATH – and therefore does not affect the running controls system), and
finally to the production area of both development and production machines. Only at this
last stage will a user or process started on production see your changes. You use the first
two stages to test your changes.
All three of these release stages are managed by scripts that will ask you for your
password and verify that you have the unix privilege to make the release. They will also
ask you why you are making the release, and log your reply. The log is in
$CD_SOFT/log/release.log, which is on the web at
http://www.slac.stanford.edu/grp/cd/soft/log/release.log.

6.13.1. Release to “TST” and test
The first stage of release is “tst” and is performed by the command “gmaketst”.
gmaketst simply runs gmake in the reference directory, which following your
cvs commit, will have the latest version of all the files. The gmake, if successful,
will create executables in $CD_SOFT/tst/solaris/bin/

12 Any editor will do the job of course. Emacs is common but complicated. Some unix programmers prefer vi, which
can be confusing too. A very simple editor on all unix systems is called pico.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

21

gmaketst util/alh_hrtbeat_mon
To test executables, remember, the default value of PATH does not include
$CD_SOFT/tst/solaris/bin/.This is so that you can cvs commit your
program, and build it, without it yet being used by other people. So, to test your
changes you have to add the tst directory to your PATH:
setenv PATH ${CD_SOFT}/tst/solaris/bin:${PATH}

If you added a new executable, you may have to rehash:
rehash

Then just type the executable file’s basename. For instance to test
alh_hrtbeat_mon
alh_hrtbeat_mon

6.13.2. Release to “DEV” and test
The second stage of release is “dev” and is performed by the command
“gmakedev”. It escalates executables from their tst release directory to their dev
directory, $CD_SOFT/dev/solaris/bin/.E.g.:
gmakedev util/alh_hrtbeat_mon
On development hosts, the dev directory of executables is already in the default
PATH, ahead of the new and prod directories (see below). This is so you can
release to a public place on the development machines and colleagues can test
your changes before you release them to production. So, everyone using a
development machine will now be using your release, and to test a program you
only need to rehash, and then just type its file basename. E.g.:
rehash

alh_hrtbeat_mon
Additionally, gmakedev checks which of the files which were changed or added,
are also listed in the manifest file, and exports those over to production for you.
On production hosts, the dev directory of executables is deliberately NOT in the
default PATH. So if you want to test on production, log in, change the PATH to
include dev, and then run your program. E.g.:
ssh –X –l cddev opi00gtw00

cddev> setenv PATH ${CD_SOFT}/dev/solaris/bin:${PATH}

cddev> rehash; alh_hrtbeat_mon

6.13.3. Release to “NEW” and test
The last stage of release that a programmer does, is “NEW”. NEW is performed
by the command “gmakenew”. It escalates executables from the DEV directory
for executables, to the NEW directory for executables:
$CD_SOFT/new/solaris/bin/..E.g.:
gmakenew util/alh_hrtbeat_mon
The NEW directory is in the default PATH of all users on both production and
development nodes. So, you don’t need to add anything to the PATH to test your
changes or for anyone else to test them.
You should test your changes on production, even if they worked at the
development level, before you go on to new things.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

22

From development you can run an executable on production with ssh, for
instance to test alh_hrtbeat_mon:
ssh –l cddev –X opi00gtw00 {rehash; alh_hrtbeat_mon}

This marks the end of the release sequence that a developer goes through. Once a week or
so, all software which is at the "new" stage of release, is "swept" to "prod". The sweep is
done for all software presently in “new” by one designated person, typically after the
Monday morning meeting. The sweep procedure sends email to sw_release when it’s
done.

6.14. Release your cvs reservation
cd back up to your working directory (ex. ~/work). Then give up your CVS checkout
with cvs release. Note that cvs release requires that the argument is precisely the same
argument as was used to do the cvs checkout.
cvs release util/alh_hrtbeat_mon

Finally rm -fr util/hrtbeat_mon to cleanup your work space and avoid
confusion - cvs never deletes anything! If you have reserved other directories higher up
the directory hierarchy, don’t delete those too by accident.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

23

7. Developing External Packages
This chapter deals with the support we have for version-controlled releases of external software
“packages”, such as EPICS extensions. Packages, in this context, are defined as software suites which
were not built by our makefile framework. They may or may not have been written by us. Examples are to
be found in /afs/slac/package/, especially /afs/slac/package/epics/slaconly/R3.13.6/extensions/src/. Even
though they have not been built using our standard framework, our standard framework can still release
them in a controlled way –see 7.3 below. Optionally, a developer can choose to put the source code of an
external package they are responsible for in our CVS repository – see 7.4 below.

7.1. Overview
The system described here allows a developer to release executables in a controlled way,
into the Unix Control system, without that software having to be built using our
makefiles. The executable (either a program, or a library) of the package which you want
to release into our standard release directories, may start out being located anywhere on
the AFS file-system. A common location is likely to be somewhere under
/afs/slac/package/, for example, cmlog’s source code is in /afs/slac/package/cmlog/.
Additionally, this chapter describes support for source-code management of external
software packages in our CVS repository.

7.2. References
See the Principles of Design for descriptions of the software release makefile framework.
Those makefiles implement the release system described below.

7.3. Release Support
This section details how to support the release of executables, libraries, and other
supporting files, into the unix control system.
The basic idea is to use the familiar Makefile and Makefile.Host makefiles that we use
for regular software we write, except only to use the release support component of those
makefiles. That is, we wont build the external software using our make rules, but we will
be able to use gmaketst, gmakedev, gmakenew and sweep, to move the executables,
libraries and assorted configuration files from where-ever, into our release areas. In this
way, the executables of the external software will be put into our standard PATHs, and, if
wanted, can be put on production machines using our distribution scheme:
Directory Standard Use
$CD_SOFT/cvs/ext/ Required CVS Repository of the supporting files for

releasing external software package executables
(Makefile and Makefile.Host), any additional
configuration files we need to add, and any
manifest file needed for distribution of the
package to production machines. This is not the
CVS repository of the source code itself – see 7.4

$CD_SOFT/ref/ext/ Required The reference area for above.
/afs/slac/package/<subd> Optional The external software source code, executables,

and assorted supporting files, as distributed from
its vendor, might optionally placed here –see
Note below.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

24

 Table 2: Directories Supporting Release of External Software

Note that the use of CVS is not a requirement for the source code of external software
packages to be used in the control system, but if our CVS repository is used (in the
locations described in Table 3), then the resulting executables must be released by our
release mechanism, as described here.

7.3.1. Creating Release Support for External Software
This section details how a developer creates the necessary infrastructure to
release external software into the control system.

7.3.1.1. Makefiles and other supporting files

Each external package that is released through this scheme, must have a
CVS directory under $D_REF/ext/, in which are placed the makefiles
which do the release. These makefiles are regular instances of the
familiar Makefile and Makefile.Host, except that they don’t contain the
source code specifications that detail what to build the executable from
(SRCS macro and so on); they only contain the PROD, LIBS and other
macros that say what the executables and libraries are named and where
to get them.
Into any directory, like ~/work/ext/, (which has the important property
that you can write files 2 directory levels above it – which will be
important for testing) copy the template Makefile and Makefile.Host
from $CD_REF/common/stds/unix/template/.
source $CD_SOFT/dev/script/ENVS.csh

cd

mkdir work; cd work

mkdir ext; cd ext

cp $CD_REF/common/stds/unix/template/Makefile* .

Check that the TOP variables in these Makefiles are right. The TOPs
have to have enough ../ in them to get from the subdirectory of
$CD_SOFT/ref/ext/ that the makefiles will be run from, to
$CD_SOFT/ref/. The default values from the template is right for a
projects makefiles in an immediate subdirectory of
$CD_SOFT/ref/ext/.

7.3.1.2. Edit the Makefiles, to get executables and other files from
elsewhere

Makefile needs little or no modification:
TOP=../..
INCMK=$(CD_COM_MAKE)
include $(INCMK)/CONFIG_BASE
include $(INCMK)/RULES_ARCHS

 Figure 3: makefile "Makefile" for releasing cmlog

Makefile.Host does need to be edited. It needs to be told the names of
the deliverables it must get, and where to get them. To tell it the names
of the deliverables use the regular variables like PROD and LIBRARY.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

25

Do not fully qualify the file-names13. Instead use the gmake command
“vpath” to direct gmake to the deliverable names. Note that vpath must
be given a pattern argument (no pattern means clear all previous
patterns, it doesn’t mean match all patterns); so you can use a fully
qualified pattern, like “cmSpy” to get cmSpy.
A representative extract of the Makefile.Host that handles releasing
cmlog and all its associated applications’ executables and libraries, is
given below:

TOP = ../../..
INCMK=$(CD_COM_MAKE)
include $(INCMK)/CONFIG_BASE
#--
ADD MACRO DEFINITIONS AFTER THIS LINE

cmlog base package
vpath cmlog% /afs/slac/package/cmlog/prod/bin/solaris
PROD = cmlog
PROD += cmlogAdmin
PROD += cmlogClientD
PROD += cmlogConverter

vpath cmSpy /afs/slac/package/cmlog/appl/cmSpy/
PROD += cmSpy

vpath fwdBro /afs/slac/package/cmlog/appl/fwdBro/prod/
PROD += fwdBro

libraries.
vpath %.so /afs/slac/package/cmlog/prod/lib/solaris/
vpath %.a /afs/slac/package/cmlog/prod/lib/solaris/

SHARED_LIBRARIES = YES
LIBRARY := cmlog
#cmlogb data db

include $(INCMK)/RULES.Host
#--
ADD RULES AFTER THIS LINE

Figure 4: Makefile.Host in $CD_REF/ext/cmlog/ that releases
cmlog executables and libraries from /afs/slac/package/cmlog/

Not that, having created the makefiles that do the release, the procedure
for doing the release is identical to that for releasing software we write.
That is, follow exactly the same procedure as that given in chapter 6 for
developing programs. The following describes how to release the
release support itself, for the first time.

7.3.2. Test the release support makefiles
You can test the release support makefiles:

13 Fully qualified names, like PROD = /afs/slac/package/cmlog/prod/solaris/bin/cmlog only works for some kinds of
file, and there is a problem with using VPATH (the makefiles attempt to construct libraries found with VPATH), but
the vpath mechanism is that which the makefile framework has been modified to recognize.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

26

~/work/ext> gmake

This will copy the deliverables you specified in the PROD, LIBRARY, SCRIPT
and other variables in Makefile.Host, to the default local install directories for
their filetype. Ie, cmlog will be copied from
/afs/slac/package/cmlog/prod/bin/solaris to the local
directory ../../sun4-solaris2/bin/.
Test the moved executables by adding the local directories to PATH and
LD_LIBRARY_PATH etc, and running them.

7.3.3. CVS the Release Support Files
Import the release support files (plus other configuration files and any manifest
file), in CVS module “ext”. For the cmlog example, this would be:
cvs import –m “Release Support for cmlog” \

ext/cmlog CD_SOFT R1_0

Check the output to verify it imported all the files you want, and no more.

7.3.4. Create the Reference Directory
Change directory to $CD_SOFT/ref and create the first cvs checkout of the ext
sub-module you just imported. For instance, if in the cvs import command, you
said you wanted to create a module named ext/cmlog, as we did in the example
above, then you must create the initial checkout of ext/cmlog. Don’t forget to
release it too:
cd $CD_SOFT/ref

cvs checkout ext/cmlog

cvs release ext/cmlog

7.3.5. Do the first release into our release areas
The following will move the deliverables specified through our release
directories. gmaketst will fetch them from the locations specified in the vpath
commands in Makefile.Host, and place them in tst stage of release (as is usual
for gmaketst). gmakedev and gmakenew will escalate the deliverables in the
usual way.
mail sw_release@slc.slac.Stanford.edu

gmaketst ext/cmlog

gmakedev ext/cmlog

gmakenew ext/cmlog

7.4. CVS Support for External Software
In addition to release support, maintainers of external software may choose to put the
source code of the packages in our CVS repository. All such external software source
code shall go in sub-directories of one specially designated CVS module,
$CD_SOFT/cvs/package/.
Note, only the source code may be placed here, no executables. It’s worth pointing out
though, that CVS does not require that all the files in a source directory that is “under

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

27

CVS control” need to be in CVS. So you could, with careful use of cvs import and
cvs add, put only the source code from a directory that contains source, object, and
executable, into CVS.
The rules we require are:

1. Only the CVS repository module “package” may be used for external software.
$CD_SOFT/{cvs,ref}/package/.

2. There must be a matching $CD_SOFT/ref/ext/ directory for each
$CD_SOFT/ref/package/ directory. The executables (and deliverables) of all
software whose source is in our CVS repository, must be released using our
release procedure, as detailed above in this chapter, and that includes
$CD_SOFT/ref/package/. In other words, if you use our CVS repository, you
must use our release procedure.

3. Do not symlink out of $CD_SOFT/ref/package/, only symlink in14. For instance,
do not create symlink $CD_SOFT/ref/package/cmlog@ to point to
/afs/slac/package/cmlog/src/, but you may create /afs/slac/package/cmlog/src@
to point to $CD_SOFT/ref/package/cmlog/ if you like.

Directory Standard Use
$CD_SOFT/cvs/package/ Required If an external software suite does use our CVS

repository for its source code, then it must be
placed in a sub-directory of this CVS directory.
Ie, cvs import to package/<subd>.

$CD_SOFT/ref/package/ Required The ref directory for above.

/afs/slac/package/<subd> Optional You may have other files for your package in
/afs/slac/package/, such as EPICS extensions,
and you may want to build there. You can
symlink from /afs/slac/package/<subd> to
$CD_SOFT/ref/package/<subd>.

Table 3: Directories Supporting CVS of External Software

To use this system, just follow the instructions in chapter 14, “Putting a directory in
CVS”, with one important exception: where you use the cvs import command, don’t use
the tags we use for software written by us (CD_SOFT and R1_0). Instead use tags you as
the maintainer will remember and help you. The first is the vendor tag – it specifies who
supplied us the software (eg JLAB), the second is the version tag. It has nothing to do
with CVS’s internal version numbering, it’s just a free format string to help you tag the
the package that comes in a version number. But, take care to set it intelligently because
it will be your primary way to merge source code of new versions that come in from the
vendor, with our modifications. Such merge operations can be done using cvs update
giving a tag. See the CVS manual for using cvs update with a tag. E.g.:
cvs import –m “Initial Import” package/cmlog JLAB R2_1

Don’t forget to create the initial cvs checkout, and cvs release that initial checkout.

14 This is so that we can write unix find commands which search all our source code. These have to be able to traverse
symlinks, but if we symlink out into the unknown, who knows how long a find command will take to complete.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

28

8. Startup File Handling

This chapter describes how to create or modify so-called “start-up” files. These are the files used to start or
restart an application, for instance at host boot time. It covers the basic setup requirements, where the
relevant files reside in the development file-system, how to create or checkout display files from CVS, and
how to release changes back into the control system.

8.1. Startup files and Directories
There are two kinds of startup-file for each program. Both kinds have names which start
st.<something>.

1. Those that are literally executed directly by the host’s startup sequence. These
are located in the host’s /etc/init.d/ directory. Call these “type I” startup files.
These are, at present not in CVS, and are not released by our release system.

2. Those that setup the environment for a program to run, and then run it. Call
these “type II” startup files. These we keep in CVS, with the program they run,
and these are escalated through our release procedures. For instance, the
program cmdSrv, which is under the “app” CVS module, keeps its startup files
in $CD_SOFT/ref/app/cmdSrv/script/st.*. In release, all programs
deliver their type II startup files to
$CD_SOFT/{tst,dev,new,prod}/solaris/sys.

The normal sequence of events is that a type I startup file does nothing except
execute the type II startup file.

8.2. Type I Startup Files
The only job these have is to find and execute the type II startup file. They do this using a
PATH.
On development machines, type I startup files search the following directories for type II
startup files:
 /afs/slac/g/cd/soft/new/solaris/sys
 /afs/slac/g/cd/soft/prod/solaris/sys
On production machines, type I startup files search the following directories for type II
startup files:
 /usr/local/cd/soft/new/solaris/sys
 /usr/local/cd/soft/prod/soalris/sys
The rest of this chapter is devoted to describing the development of Type II startup files.

8.3. Basic Setup Requirements
If your login process has not already done so, you must set up the standard development
environment with source /afs/slac/g/cd/soft/dev/script/ENVS.csh.
Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

29

8.4. CVS Checkout
From your own working directory (ex. ~/work) check out the cvs module in which the
startup script you want to modify is located, or to which you want to add a startup script.
For example:
cvs checkout app/cmdSrv/script
The following would check out only the file st.cmdSrv.dev:
cvs checkout app/cmdSrv/script/st.cmdSrv.dev

To manage the release of startup files you will need the makefiles from their directory, so
if you do check out only one or two scripts by name, you will also need to additionally
checkout Makefile and Makefile.Host from the same directory.

8.5. Edit Startup Scripts
Edit the file you want to change, or create a new startup script. If you a create a new
script, remember to add the standard csh or sh header from
$CD_REF/common/stds/unix/header/.
Don’t forget the #!/bin/sh at the top of an sh (bourne shell) executable script. All
startup scripts should be in sh, and remember, these files are always executable, they’re
never “sourced” like csh scripts often are.

8.6. “Make” the startup files
Each file that must be escalated from a directory, must be listed in “functional file-type”
macro definitions in the directory’s Makefile.Host file. The macro tells the makefile
system what kind of file it is, and therefore how to handle the file – where to put it. The
functional file-type for startup files is “STARTUP”. Therefore, if you add a new startup
file, you must update Makefile.Host to add a STARTUP line for each startup file you
add. For instance, app/cmdSrv/script’s Makefile.Host looks like this:
~greg> more $CD_SOFT/ref/app/cmdSrv/script/Makefile.Host

…

General tools (executable scripts)

Startup cmdSrv process

STARTUP += st.cmdSrv.prod

STARTUP += st.cmdSrv.nlcdev

STARTUP += st.cmdSrv.pepii

STARTUP += st.cmdSrv.dev
…

Having updated the Makefile.Host for new startup-scripts, you are ready to build. Just
issue gmake in the directory you checked out:
gmake

gmake moves executables, of which startup scripts are an example, to a subdirectory
named O.<host-architecture>. If necessary it creates the subdir for you. If your’re on a
solaris machine, this will be O.solaris.
Additionally it installs the scripts into a test install directory off the project “TOP”. Since
STARTUP files are one instance of system-administration files, and all system

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

30

administration files go in directories named <host-architecture>/sys, the startup files are
additionally put in ${TOP}/solaris/sys/. TOP is defined in the Makefile.Host.

8.7. Testing in your own directory
To test executable scripts, first put the install directory at the head of your PATH. E.g.
setenv PATH ~/work/sun4-solaris2/bin:${PATH}

Test your startup script thoroughly. If a startup script fails when in production, it may
cause a control system host computer not to boot.

8.8. Update Manifest File
Those scripts from the directory which are normally run on “production” machines (i.e.
gateways like opi00gtw00) have to be listed in the directory’s manifest file. This file lists
all the files which the distribution system must export over to the production machines
for you. Our type II startup files typically are run on production machines, so, if you have
added a new startup-script, you have to edit the file named manifest, and add a line
naming each file to be exported to it.
For STARTUP scripts, each line must be of the form <host-architecture>/sys/<filename>.
The host architecture is normally solaris on AFS machines, so for example:

~greg/work> more app/cmdSrv/script/manifest
solaris/sys/st.cmdSrv.dev
solaris/sys/st.cmdSrv.nlcdev
solaris/sys/st.cmdSrv.pepii
solaris/sys/st.cmdSrv.pro

If no manifest file exists for the directory, you will have to create one and add it to CVS
(cvs add manifest).

8.9. Release Peliminaries
Before starting your release you have to warn the production system administrators of
your changes.
Also, don’t forget to send email to sw_release, (see 6 below for checklist).

8.10. Update CVS
If you have created a new script (one that wasn’t previously in CVS), you have to tell
CVS about it before you can cvs commit it (see below):
cvs add st.mynewstartupscript

Before putting your changed files into CVS (cvs commit), it’s a good idea to check that
no-one else has changed the same files you changed while you had them checked out. To
do that, do a cvs update. CVS will mark any files that were modified by someone
else with an M. If it was able to merge your changes into their changes it will stop there.
If it couldn’t do the merge, it will report “conflicts during merge”. To track down who
has done what, use cvs status.
When you’re sure of all your edits, commit your changes back to CVS:
cvs commit

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

31

8.11. Release your scripts into the Control System
Release is a three stage process. You will first release only to development machines,
then to both development and production machines (but to a place on production
machines which is not known to other scripts on production – that is, not on the
production PATH – and therefore does not affect the running controls system), and
finally to the production area of both development and production machines. Only at this
last stage will a user or process starting the script on production see your changes. You
use the first two stages to test your changes.
All three of these release stages are managed by scripts that will ask you for your
password and verify that you have the unix privilege to make the release. They will also
ask you why you are making the release, and log your reply. The log is in
$CD_SOFT/log/release.log, which is on the web at
http://www.slac.stanford.edu/grp/cd/soft/log/release.log. The SW_LOG elog is also
updated.

8.11.1. Release to “TST” and test
The first stage of release is “tst” and is performed by the command “gmaketst”.
gmaketst, and all the other release verbs (see blow), release all the files which
have changed in the ref directory you release, not just necessarily the STARTUP
scripts. Still, the description below concentrates only on what happens to startup
files. gmaketst moves startup-scripts to their tst release directory
$CD_SOFT/tst/solaris/sys/ (it also sets the NIS “x” bit of executable
scripts). For instance, to release scripts which you changed in CVS directory
app/cmdSrv/script, you would issue:
gmaketst app/cmdSrv/script
Remember, the PATH does deliberately, not include the startup files directory
by default. To test startup-scripts:
setenv PATH ${CD_SOFT}/tst/solaris/sys:${PATH}

If you added a new executable script, you may have to rehash:
rehash

Then just type the executable script’s file basename. For instance to test
st.cmdSrv.dev
st.cmdSrv.dev

8.11.2. Release to “DEV” and test
The second stage of release is “dev” and is performed by the command
“gmakedev”. It escalates startup scripts from their tst release directory to their
dev directory, $CD_SOFT/dev/solaris/sys/.E.g.:
gmakedev app/cmdSrv/script
Additionally, gmakedev checks which of the files which were changed or added,
are also listed in the manifest file, and exports those over to production for you.
Again, remember, the PATH does deliberately not include the startup files
directory by default, and this goes for production machines as well as dev. To
test startup-scripts in dev then:
ssh –X –l cddev opi00gtw00

cddev> setenv PATH ${CD_SOFT}/dev/solaris/sys:${PATH}

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

32

cddev> rehash; st.cmdSrv.prod

8.11.2.1. That’s all folks!

DEV is the last stage of release a developer is allowed to go for
STARTUP scripts! Only a system-administrator may escalate the script
past this point, so they have to do the actions below.

8.11.3. Release to “NEW” and test
The last stage of release for a startup file, other that the sweep, is “NEW”. NEW
is performed by the command “gmakenew”. It escalates scripts from the DEV
directory for executables, to the NEW directory for executables:
$CD_SOFT/new/solaris/sys/..E.g.:
gmakenew app/cmdSrv/script

8.12. Release your cvs reservation
cd back up to your working directory (ex. ~/work). Then give up your CVS checkout
with cvs release. Note that cvs release requires that the argument is precisely the same
argument as was used to do the cvs checkout.
cvs release app/cmdSrv/script

Finally rm -fr app/cmdSrv/script to cleanup your work space and avoid
confusion - cvs never deletes anything! If you have reserved other directories higher up
the directory hierarchy, don’t delete those too by accident.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

33

9. Configuration File Support

This chapter describes how to create or modify configuration files. This is a general term for files which
contain define the configuration of some piece of software. We distinguish two types of configuration,
though it’s not intended to be a rigorous distinction:

1. “User” configurations. These are typically written by physicists or other users of the control
system.

2. “System” configurations. These are typically written by one of the control system or support
people. E.g. the file some network system program might use to list the ports on which it operates.

This chapter covers the basic setup requirements, where the relevant files reside in the development file-
system, how to create or checkout configuration files from CVS, and how to release changes back into the
control system.

File Type Macro Reference Dir Release Dirs
CONF $CD_SOFT/ref/cnf/… $CD_SOFT/{tst,dev}/conf/

CONFSYS $CD_SOFT/ref/… $CD_SOFT/{tst,dev}/confsys/

Table 4: Config File Support Summary

9.1. References
For a summary of what a release is, see Chapter 3. For details about the control system
development environment design, in particular about CVS and an explanation of the
release scheme, see the first couple of chapters of the Principles of Design document.

9.2. Configuration Files and their Directories
The directories are different for user configuration files than for system configurations.

9.2.1. User Configuration Files Directories
User configuration files are kept in their own CVS directory,
$CD_SOFT/ref/cnf/. Under this directory are subdirectories for each
application or use to which configuration files are put.
User configuration files are released first to $CD_SOFT/tst/conf/, and
then, after some testing, to $CD_SOFT/dev/conf/. These delivery
directories are “flat”, they contain, in the single directory, all the files in all the
sub-diretories of $CD_SOFT/ref/cnf/.

9.2.2. System Configuration Files Directories
On the other hand, system configuration files do not have their own directory in
CVS, they may originate in any of the CVS source directories under
$CD_SOFT/ref/.
System configuration files are released first to $CD_SOFT/tst/confsys/,
and then, after some testing, to $CD_SOFT/dev/confsys/. These delivery

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

34

directories are “flat”, they contain, in the single directory, all the system
configuration files in all the subdiretories of $CD_SOFT/ref/.

Note that the intention is that all, and only, user configuration files, are intended to be
under $CD_SOFT/ref/cnf/, whereas system configuration files are kept with the
programs they configure, anywhere in ref.

9.3. Basic Setup Requirements
If your login process has not already done so, you must set up the standard development
environment with source /afs/slac/g/cd/soft/dev/script/ENVS.csh.
Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh.

9.4. CVS Checkout
From your own working directory (ex. ~/work) check out the CVS module in which the
config file you want to modify is located, or to which you want to add one. For example:
cvs checkout cnf/channelWatcher
Then go down to your copy of the directory you checked out;
cd cnf/channelWatcher

9.5. Edit Config
Edit the file you want to change, or create a new one. Use a standard editor, like vi, or
emacs. There is a very simple editor named “pico” on most unix systems.

9.6. “Make” configuration files
Each file that must be released from a source directory (such as cnf/channelWatcher),
must be listed in “functional file-type” macro definitions in the directory’s Makefile.Host
file. The macro tells the makefile system what kind of file each file is. From that, the
makefile system works out where to put each file. The functional file-type for user
configuration files is “CONF”. Therefore, if you add a new startup file, you must update
Makefile.Host to add a CONF line for each startup file you add.
Having updated the Makefile.Host for new config files, you are ready to build. Just issue
gmake in the directory you checked out:
gmake

gmake moves user configs (CONF) to a test install directory conf/ which it creates at
the project root. The ”project root” is the directory in which you did the CVS checkout
above, so in this example it would have created subdirectory conf under ~work.
System configs (CONFSYS) are installed under the project root in confsys/.

9.7. Update Manifest File
Those configs needed on “production” machines (i.e. gateways like opi00gtw00) have to
be listed in the directory’s manifest file. This file lists all the files which the release
system must export over to the production machines for you. So, if you have added a new
config-file which is to be used on production, you have to edit the file named
manifest, and add a line naming each file to be exported to it. If there is no manifest

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

35

file, you have to create on in an editor. You must add lines for each file to be exported to
production, e.g.:
conf/myconfigfile
conf/anotherconf.fl
confsys/assytemconfigfile.conf

9.8. Release Peliminaries
Before starting your release you send email to sw_release, (see 6 below for checklist),
and inform the relevant control room of your changes.

9.9. Update CVS
If you have created a new config (one that wasn’t previously in CVS), you have to tell
CVS about it before you can cvs commit it (see below):
cvs add mynewconfig

Before putting your changed files into CVS (cvs commit), it’s a good idea to check that
no-one else has changed the same files you changed while you had them checked out. To
do that, do a cvs update. CVS will mark any files that were modified by someone
else with an M. If it was able to merge your changes into their changes, it will stop there.
If it couldn’t do the merge, it will report “conflicts during merge”. To track down who
has done what, use cvs status.
When you’re sure of all your edits, commit your changes back to CVS:
cvs commit

9.10. Release your scripts into the Control System
Release of configs is a two stage process. You will first release only to a test area
($CD_SOFT/tst/conf/) that is not used by programs running in a production capacity.
Also, tst is not mirrored to the production machines. Then, some testing, you release to
the production area of both development and production machines (dev). Only at this last
stage will a user or process which uses the config file see your changes.

9.10.1. Release to “TST” and test
The first stage of release is “tst” and is performed by the command “gmaketst”.
gmaketst (and gmakedev, see below), release all the files which have changed in
the ref directory you released, not just necessarily the CONF files. Following the
execution of gmaketst, CONF files will be found in $CD_SOFT/tst/conf/.
gmaketst cnf/channelWatcher
If you can, test your changes at this level of release before going further.

9.10.2. Release to “DEV” and test
The second stage of release is “dev” and is performed by the command
“gmakedev”. It escalates files from tst/conf/ release directory to the dev
directory, dev/conf/:
gmakedev cnf/channelWatcher
Additionally, gmakedev checks which of the files which were changed or added,
are also listed in the manifest file, and exports those over to production for you.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

36

So, on both development and production computers, you will find all the user
config files in a directory named $CD_SOFT/dev/conf/.

9.10.2.1. That’s all folks!

DEV is the last stage of release for configuration files. “DEV” is obviously
something of a misnomer because even though the files have only been released
to the “dev” level, they are never-the-less released to production machines. The
rule is, files which don’t respond to a search path are only released up to the
DEV level, because there would be no way for a program to dependably use the
files if it were allowed to be anywhere in the regular 3 stage release system.

9.11. Release your cvs reservation
cd back up to your working directory (ex. ~/work). Then give up your CVS checkout
with cvs release. Note that cvs release requires that the argument is precisely the same
argument as was used to do the cvs checkout.
cvs release –d cnf/channelWatcher

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

37

10. Oracle Script Support

For information on ESD Oracle database development, including available Oracle instances, users, and
client tools see http://www.slac.stanford.edu/grp/cd/soft/database/index.html
This chapter describes how to create or modify Oracle SQL and PL/SQL scripts and SQL Loader control
files. SQL and PL/SQL scripts are not executable from a Unix shell, but are run from an Oracle login
session. Description of these files:

• SQL script: A sequence of sql statements that performs a database operation.
• PL/SQL script: Written in PL/SQL, the Oracle procedural language, these scripts are run to load

stored procedures or functions into the database, or as standalone programs.
• SQL Loader control file: A configuration file defining the layout of an ascii input data file that is

to be loaded into the database using SQL Loader. The file also contains other parameters
associated with the file load.

This chapter covers the basic setup requirements, where the relevant files reside in the development file-
system, how to create or checkout Oracle scripts and control files from CVS, and how to release changes
back into the control system.

File Type Macro Reference Dir Release Dirs
ORAS $CD_SOFT/ref/<<various>> $CD_SOFT/{tst,dev}/ora/

Table 5: Oracle File Support Summary

Oracle scripts are generally associated with specific applications, and are maintained in individual
application CVS and reference directories.

10.1. Basic Setup Requirements
If your login process has not already done so, you must set up the standard development
environment with source /afs/slac/g/cd/soft/dev/script/ENVS.csh.
Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh.

10.2. CVS Checkout
From your own working directory (ex. ~/work) check out the CVS module in which the
Oracle file you want to modify is located, or to which you want to add one. For example:
cvs checkout app/pvudb_load
Then go down to your copy of the directory you checked out;
cd app/pvudb_load

10.3. Edit Oracle file
Edit the file you want to change, or create a new one. Use a standard editor, like vi, or
emacs. There is a very simple editor named “pico” on most unix systems.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

38

10.4. “Make” Oracle files
Each file that must be released from a source directory (such as app/pvudb_load), must
be listed in “functional file-type” macro definitions in the directory’s Makefile.Host file.
The macro tells the makefile system what kind of file each file is. From that, the makefile
system works out where to put each file. The functional file-type for Oracle files is
“ORAS”. Therefore, if you add a new startup file, you must update Makefile.Host to add
an ORAS line for each startup file you add.
Having updated the Makefile.Host for new ORAS files, you are ready to build. Just issue
gmake in the directory you checked out:
gmake

gmake moves Oracle files (ORAS) to a test install directory ora/ which it creates at the
project root. The ”project root” is the directory in which you did the CVS checkout
above, so in this example it would have created subdirectory ora under ~work.

10.5. Update Manifest File
Those Oracle files needed on “production” machines (i.e. gateways like opi00gtw00)
have to be listed in the directory’s manifest file. This file lists all the files which the
release system must export over to the production machines for you. So, if you have
added a new Oracle file which is to be used on production, you have to edit the file
named manifest, and add a line naming each file to be exported to it. If there is no
manifest file, you have to create on in an editor. You must add lines for each file to be
exported to production, e.g.:
ora/pvlist_to_pvudb.sql

ora/load_pvu_recs.pl

10.6. Release Preliminaries
Before starting your release you send email to sw_release, (see below for checklist), and
inform the relevant control room of your changes.

10.7. Update CVS
If you have created a new Oracle file (one that wasn’t previously in CVS), you have to
tell CVS about it before you can cvs commit it (see below):
cvs add myneworafile

Before putting your changed files into CVS (cvs commit), it’s a good idea to check that
no-one else has changed the same files you changed while you had them checked out. To
do that, do a cvs update. CVS will mark any files that were modified by someone
else with an M. If it was able to merge your changes into their changes, it will stop there.
If it couldn’t do the merge, it will report “conflicts during merge”. To track down who
has done what, use cvs status.
When you’re sure of all your edits, commit your changes back to CVS:
cvs commit

10.8. Release your scripts into the Control System
Release of Oracle files is a two stage process. You will first release only to a test area
($CD_SOFT/tst/ora/) that is not used by programs running in a production capacity. Also,
tst is not mirrored to the production machines. Then, some testing, you release to the

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

39

production area of both development and production machines (dev). Only at this last
stage will a user or process which uses the Oracle file see your changes.

10.8.1. Release to “TST” and test
The first stage of release is “tst” and is performed by the command “gmaketst”.
gmaketst (and gmakedev, see below), release all the files which have changed in
the ref directory you released, not just necessarily the ORAS files. Following the
execution of gmaketst, ORAS files will be found in $CD_SOFT/tst/ora/.
gmaketst app/pvudb_load
If you can, test your changes at this level of release before going further.

10.8.2. Release to “DEV” and test
The second stage of release is “dev” and is performed by the command
“gmakedev”. It escalates files from tst/ora/ release directory to the dev
directory, dev/ora/:
gmakedev app/pvudb_load
Additionally, gmakedev checks which of the files which were changed or added,
are also listed in the manifest file, and exports those over to production for you.
So, on both development and production computers, you will find all the Oracle
files in a directory named $CD_SOFT/dev/ora/.

10.8.2.1. That’s all folks!

DEV is the last stage of release for Oracle files. “DEV” is obviously something
of a misnomer because even though the files have only been released to the
“dev” level, they are never-the-less released to production machines. The rule is,
files which don’t respond to a search path are only released up to the DEV level,
because there would be no way for a program to dependably use the files if it
were allowed to be anywhere in the regular 3 stage release system.

10.9. Release your cvs reservation
cd back up to your working directory (ex. ~/work). Then give up your CVS checkout
with cvs release. Note that cvs release requires that the argument is precisely the same
argument as was used to do the cvs checkout.
cvs release –d app/pvudb_load

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

40

11. Matlab File Support
This chapter describes how to introduce Matlab scripts and compiled Matlab standalone executables into
the unix control system.

11.1. Matlab Scripts and Standalone Executables
Matlab scripts are files with the extension “.m” that are run in the Matlab run-time
environment. They are written using the Matlab scripting language and may call Matlab
extension functions, such as Matlab Channel Access (MCA) and Matlab Archiver
Retrieval (MAR) functions. A Matlab standalone executable is created from Matlab
scripts that have been compiled by the Matlab Compiler to produce an executable
program that is run without the need for a Matlab run-time license.

11.2. Matlab File Directories
Matlab scripts may be put in any CVS directory. The release directories are:

1. matlab/, is the release dir for Matlab scripts (i.e.
$CD_SOFT/{tst,dev,new,prod}/matlab/).

2. bin/solaris/, is the release dir for Matlab standalone executables (i.e.
$CD_SOFT/{tst,dev,new,prod}/solaris/bin/).

11.3. Basic Setup Requirements for Matlab File Development
If your login process has not already done so, you can setup the environment with
source /afs/slac/g/cd/soft/dev/script/ENVS.csh.

Make sure environment variable CVSROOT is set appropriately (printenv
CVSROOT). If it is desired to set this to /afs/slac/g/cd/soft/cvs and it is not set to this
currently, source $CD_SCRIPT/cvsSetEnv.csh.
The instructions in this chapter are only applicable to Matlab software built under
$CD_SOFT/ref with CVS repository $CD_SOFT/cvs. If you are developing an EPICS
extension under /afs/slac/package/epics (in which case the environment variable
CVSROOT should be set to /afs/slac/package/epics/slaconly/cvs) and need to build a
Matlab standalone executable, you must build it using the makefile system that extension
uses. After the executable has been built you may follow the instructions in Chapter 7 on
Releasing External Software to release the executable into our release directories using
the MCC_PROD macro instead of the PROD macro.

11.4. CVS Checkout
From your own working directory (ex. ~/work) check out the cvs module in which the
Matlab scripts you want to modify is located, or to which you want to add one or more
scripts. For example:
cvs checkout matlab/src/toolbox
The following would check out only the Matlab script “example.m”:
cvs checkout matlab/src/toolbox/example.m

To manage the release of Matlab scripts you will need the makefiles from their directory,
so if you do check out only one or two Matlab scripts by name, you will also need to
additionally checkout Makefile and Makefile.Host from the same directory.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

41

Then cd down to the directory containing the files you checked out (cd
matlab/src/toolbox if the above example). From the checkout directory, you can do more
CVS commands pertaining to that directory, e.g. cvs checkout example2.m.

11.5. Edit Scripts
Edit the files you want to change or create new Matlab script files.

11.6. “Make” scripts
The Matlab scripts in each directory must be listed in macro definitions in the directory’s
Makefile.Host file. Therefore, if you add a new Matlab script, you must update
Makefile.Host to add a MATS line or, to create a Matlab standalone executable, lines for
MCC_PROD_SRCS, MCC_PROD_LIB, and MCC_PROD.
For Matlab scripts to be run in the Matlab run-time environment, just add a line of the
form MATS += filename for every Matlab script file you wish to add.
If instead one or more Matlab scripts are to be compiled by the Matlab compiler to
produce a standalone executable, add a line of the form MCC_PROD_SRCS += filename
for each Matlab script to be compiled. It should be noted that the Makefile.Host file is
run in the directory below where it is located so the source files should be referenced as
being one level higher (e.g., MCC_PROD_SRCS = ../atest.m). If there are calls to
Matlab extension functions in the Matlab source scripts, a line of the form
MCC_PROD_LIB = filename must be added to Makefile.Host (e.g., MCC_PROD_LIB =
libMar, for the Matlab Archiver Retrieval library). It is assumed that “.h” and “.mlib”
files are associated with the library name. For example, see the Matlab Channel Access
or Matlab Archiver Retrieval sections of the SLAC Matlab: PEPII, NLC Development,
SPEAR web page for information regarding the creation of these files. For these
libraries, the associated “.h” and “.mlib” files are located in
$EPICS_EXTENSIONS/lib/solaris. Finally, there must be a line of the form
MCC_PROD = filename to specify the name of the generated standalone executable file
(e.g., MCC_PROD = atest).
Having updated the Makefile.Host file, you are ready to build. Just issue gmake in the
directory you checked out:
gmake

gmake installs Matlab scripts into a local directory named “matlab”, for instance
~work/matlab/. gmake compiles Matlab standalone executable source scripts in a
subdirectory named /O.solaris. Additionally it installs the generated standalone
executable into a test install directory. The Matlab standalone executable will be
installed in a local directory named “<host-architecture>/bin/. On our AFS Solaris
development machines, extending the above example, that would be ~/work/sun4-
solaris2/bin. Note the location of the install directories, off the directory from which you
did the cvs checkout, not subdirectories of the checkout directory itself.
If you have only checked out some subset of the Matlab scripts in a CVS directory, or
you want only to build some subset of the scripts in your checkout directory, then you
have to tell gmake which ones they are by overriding the definitions of the MATS macro
in Makefile.Host on the gmake command line: gmake MATS=example.m MATS=

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

42

11.7. Testing in your own directory
To test Matlab standalone executables, first put the install directory at the head of your
PATH. E.g.
setenv PATH ~/work/sun4-solaris2/bin:${PATH}

Then test the executable.

11.8. Announce your Release
Before starting your release, don’t forget to send email to sw_release.

11.9. Update CVS
If you have created a new script (one that wasn’t previously in CVS), you have to tell
CVS about it before you can cvs commit it (see below):
cvs add mynewmatlabscript

Before putting your changed files into CVS (cvs commit), it’s a good idea to check that
no-one else has changed the same files you changed while you had them checked out. To
do that, do a cvs update. CVS will mark any files that were modified by someone
else with an M. If it was able to merge your changes into their changes it will stop there.
If it couldn’t do the merge, it will report “conflicts during merge”. To track down who
has done what, use cvs status.
When you’re sure of all your edits, commit your changes back to CVS:
cvs commit

11.10. Update Manifest File
Those Matlab scripts and standalone executables which are normally run on
“production” machines (i.e. gateways like opi00gtw00) have to be listed in the directory’s
manifest file. This file lists all the files which the distribution system must export over to
the production machines for you. So, if you have added a new Matlab script or standalone
executable, and it must be run on a gateway, then you will have to edit the file named
manifest, and add a line naming each file to be exported to it.
For Matlab standalone executables, each line must be of the form <host-
architecture>/bin/<filename>. The host architecture is normally solaris on AFS machines,
so for example test’s entry in common/tool’s manifest file is solaris/bin/test.
For Matlab scripts each line must be of the form matlab/<filename>. E.g.
matlab/example.m.
emacs15 manifest

If no manifest file exists for the directory, you will have to create one and add it to CVS
(cvs add manifest).

11.11. Release your scripts into the Control System
Release is a three stage process. You will first release only to development machines,
then to both development and production machines (but to a place on production
machines which is not known to other Matlab scripts or standalone executables on

15 Any editor will do the job of course. Emacs is common but complicated. Some unix programmers prefer vi, which
can be confusing too. A very simple editor on all unix systems is called pico.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

43

production – that is, not on the production PATH – and therefore does not affect the
running controls system), and finally to the production area of both development and
production machines. Only at this last stage will a user or process starting the script on
production see your changes. You use the first two stages to test your changes.
All three of these release stages are managed by scripts that will ask you for your
password and verify that you have the unix privilege to make the release. They will also
ask you why you are making the release, and log your reply. The log is in
$CD_SOFT/log/release.log, which is on the web at
http://www.slac.stanford.edu/grp/cd/soft/log/release.log.

11.11.1.Release to “TST” and test
The first stage of release is “tst” and is performed by the command “gmaketst”.
It moves Matlab scripts from their CVS reference directory to their tst release
directory $CD_SOFT/tst/matlab/, and Matlab standalone executables to
their tst release directory $CD_SOFT/tst/solaris/bin/ (it also sets the
NIS “x” bit of executable scripts). For instance, to release Matlab scripts which
you changed in CVS directory matlab/src/toolbox, you would issue:
gmaketst matlab/src/toolbox16
To test executable scripts, remember, the default value of PATH does not
include $CD_SOFT/tst/solaris/bin/.This is so that you can release
your standalone executable, but without it yet being used by other people. So, to
test your changes you have to add the tst directory to your PATH:
setenv PATH ${CD_SOFT}/tst/solaris/bin:${PATH}

If you added a new standalone executable, you may have to rehash:
rehash

Then just type the executable script’s file basename. For instance to test atest:
atest

11.11.2.Release to “DEV” and test
The second stage of release is “dev” and is performed by the command
“gmakedev”. It escalates Matlab scripts from their tst release directory to their
dev directory, $CD_SOFT/dev/matlab/, and Matlab standalone executables
from their tst release directory to their dev directory,
$CD_SOFT/dev/solaris/bin/.E.g.:
gmakedev matlab/src/toolbox
On development hosts, the dev directory of a Matlab standalone executable is
already in the default PATH, ahead of the new and prod directories (see below).
This is so you can release to a public place on the development machines and
colleagues can test your changes before you release them to production. So,
everyone using a development machine will now be using your release, and to
test a script you only need to rehash, and then just type its file basename. E.g.:
rehash

16 You can issue the gmaketst <directory> command from anywhere, such as your working directory. Alternatively,
you can cd to the reference directory (like $CD_SOFT/ref/common/tool), and just type gmaketst without the
directory arg.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

44

atest
Additionally, gmakedev checks which of the files which were changed or added,
are also listed in the manifest file, and exports those over to production for you.
On production hosts, the dev directory of Matlab standalone executables is
deliberately NOT in the default PATH. So if you want to test the script on
production, log in, change the PATH to include dev, and run the executable.
E.g.:
ssh –X –l cddev opi00gtw00

cddev> setenv PATH ${CD_SOFT}/dev/solaris/bin:${PATH}

cddev> rehash; atest

11.11.3. Release to “NEW” and test
The last stage of release that a programmer does, is “NEW”. NEW is performed
by the command “gmakenew”. It escalates Matlab scripts from their dev
directory to their new directory, $CD_SOFT/new/matlab, and Matlab standalone
executables from the DEV directory to the NEW directory:
$CD_SOFT/new/solaris/bin/..E.g.:
gmakenew matlab/src/toolbox
The NEW directory is in the default PATH of all users on both production and
development nodes. So, you don’t need to add anything to the PATH to test your
changes or for anyone else to test them.
You should test your changes on production, even if they worked at the
development level, before you go on to new things.
From development you can execute a script on production with ssh, for instance
to test atest:
ssh –l cddev –X opi00gtw00 {rehash; atest}

This marks the end of the release sequence that a developer goes through. Once a week or
so, all software which is at the "new" stage of release, is "swept" to "prod". The sweep is
done for all software presently in new by one designated person, typically after the
Monday morning meeting. The sweep procedure sends email to sw_release when it’s
done.

11.12. Release your cvs reservation
cd back up to your working directory (ex. ~/work). Then give up your CVS checkout
with cvs release. Note that cvs release requires that the argument is precisely the same
argument as was used to do the cvs checkout.
cvs release matlab/src/toolbox

Finally rm -fr matlab/src/toolbox to cleanup your work space and avoid
confusion - cvs never deletes anything! If you have reserved other directories higher up
the directory hierarchy, don’t delete those too by accident.

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

45

12. Developing IOC Software
NOTE: This chapter is a pre-release draft of how we INTEND to handle IOC software development.
Presently ONLY the bic follows this procedure. Do not use this procedure for other software.
This chapter deals with how to develop software that is intended to run in an EPICS Input/Output
Controller (IOC). IOCs are the basic computer of the front-end of the EPICS control system, and therefore
run a large proportion of our low and mid-level controls. EPICS (Experimental Physics and Industrial
Control system) is a framework for plant controls software, and includes much of the fundamental software
for such things as crate control, process variable database management, and displays.
In this chapter we will check out existing IOC software from its CVS area, modify it, and deploy it to an
IOC.

12.1. Setup and Preliminaries
EPICS at SLAC has quite a complicated framework, and its setup varies slightly for each
accelerator system in which EPICS is used at SLAC. These details are described further
in http://www.slac.stanford.edu/grp/cd/soft/share/slaconly/how-to/epicsSetup.html .
However, for the purposes of development, as opposed to running, the normal setup for
development is done by sourcing the basic EPICS development environment setup script:
source /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupDev
The CVS Repository and Reference Areas are:

The IOC software is in CVS module “ioc” in the ESD Software CVS repository, whose
root is $CD_SOFT/cvs, so all cvs checkouts will be carried out of directories under that
directory. You may want to verify that your CVSROOT environment variable points to
that repository:
printenv CVSROOT

/afs/slac/g/cd/soft/cvs

Although there is only once CVS module for IOC software though, there are three
reference areas, one for each EPICS version we use! The reference areas are:
$CD_REF/epics/R3.13.1/ioc
$CD_REF/epics/R3.13.2/ioc
$CD_REF/epics/R3.13.6/ioc
The relevance of this is discussed in .

12.2. Getting stuff into your area
Begin by creating a new working directory in your area, e.g.:
cd

mkdir work

cd work
Checkout the code you wish to work on from CVS. For example, to get the BIC
sequences:
cvs checkout ioc/bicApp/src/seq
If you will be able to test from your own directory later, checking out more is a better
idea, for instance the whole application:

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

46

cvs checkout ioc/bicApp

One important item the latter picks up is the config directory. You can also use a symbolic link pointing to
$CD_BASE/config, but if you do, please take note of Kristi’s warning:

When you build in your own area, using a symbolic link for the config directory which points to
$CD_BASE/config, do not perform a "gmake clean" at the top level directory. You can execute "gmake clean"
one level down, but not at the top. Also, please remove all symbolic links in these directories to any production
area. This is to avoid the problem of deleting and rebuilding a production directory which we discovered was
happening in your local epics application area. You can move around the development tree easily by using the
environment variables, or just place your symbolic links elsewhere. This will be necessary at least until the write
protection is placed on the reference directories (along with some user scripts for cvs and gmake). I don't
expect the scripts to be available anytime soon so you'll need to be aware of how the EPICS config (makefile)
work to prevent corruption of production directories.

The CVS document describing all the gory CVS detail is:

http://www.slac.stanford.edu/grp/cd/soft/cvs/cvs_for_ioc_deveopment.html

2) Build

Following the above example:

cd ~ronc/work/ioc/bicApp/src/seq
gmake

This will create /bin directories like /O.mv167.

This is the fun part, actually working on code. Just keep editing and “making” until you are happy.

3) Test from your area

makeIocBootLinks

This script will ask you a bunch of questions, answer these and the
symbolic links for booting will be created for you. An example
invocation:

[flora04] ~/wk3 > makeIocBootLinks
Enter ioc nodename: bletch
Enter 4-char microname: BL44
Supported cpu's are mv167,mv177,niCpu030,mv2700,mv2400
Enter cpu [mv167]:
Available subnets are lavc,cad,pub2,nlcdev,leb,pepii,bbr
Enter subnet [lavc]:
Do you want to load EPICS [y/n]: y
Supported EPICS applications are bic,gpib,lum,rf,tarf,pack,vib
Enter EPICS application name [common]: bic
Enter startup file [../boot/startup/st.bl44.cmd]: ./st.bl44.cmd
Enter EPICS release [R3.13.6]:

 EPICS Version R3.13.6

...Changing directory to /afs/slac/g/cd/soft/ioc/bletch
...Creating symbolic links for booting node bletch

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

47

 Verify IOC Links for bletch

Warning, EPICS IOC Application startup script startupE DOES NOT
EXIST!!!
Warning, invalid links have been found
Finished checking symbolic links!

Finished creating IOC boot links!

Note that this was an illegal IOC and a non-existant application. I had
to go delete the ...ioc/bletch subdirectory after this. You can see
from this that the existing IOC support areas are changed with this
command. This would typically be done with an existing CDVWx, for
example.

***** IT IS NOT CLEAR TO ME HOW THIS BOOTLINK KNOWS HOW TO GET
 YOUR CODE IN YOUR DIRECTORY! ******

4) Put the fixed code and/or databases back into CVS

See the CVS document for full details, but: “Cvs commit ioc” will probably work.

You can also clean-up your reservation with: “Cvs release ioc”.

You can then delete the working directory in your area, if you wish (rm –r work)

Then update the reference areas, with something like:

>cd $CD_IOC/ref/epics/R3.13.6/ioc/bicAPp

>cvs update

Then do a make to produce the newest, best code and databases in the production area:

>gmake

These last few steps need to be done for all the relevant epics versions (mostly .2 and .6).

5) Test again from the production area

As (3) above.
6) Move the code to the production machine

This will be an automated procedure someday. Now I typically FTP or SCP the new files to the production
area on the gateway machine. I typically log in to gateway 0 as cddev and FTP back to the development
machine to fetch things.

The gateway directory of interest for code is:

$CD_SOFT/ioc/prod/bin/mv167 (with different subdirectories for different CPUs).

For databases:

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

48

$CD_SOFT/ioc/prod/db

For database definitions:

$CD_SOFT/ioc/prod/dbd

7) Retest

At this time we are converting from the “old” or “3.13.2” support areas to the “new” or “3.13.6” areas. An
overview of a few characteristics of these areas is seen below. The differentiation is between the PEP-II
LLRF application and “others”, typified by the BIC:

 Version Path on development machine Notes
“Old”
LLRF

3.13.1 /afs/slac/g/pepii/llrf/ctrl/R3.13.1/epicsApp Venerable production version

 3.13.2 As above, but 3.13.2 Used in development only
“New”
LLRF

3.13.1 Same as below, but 3.13.1 Backup production version

 3.13.2 Same as below, but 3.13.2 Just in case
 3.13.6 /afs/slac/g/cd/soft/ioc/prod/rfApp,

also known as:
/afs/slac/g/cd/soft/ref/epics
/R3.13.6/ioc/rfApp

Current production version, pointed
at by $RF

“Old”
BIC

3.13.2 /afs/slac/g/pepii/bic/ctrl/dev/epicsApp Venerable production version

“New”
BIC

3.13.2 Same as below, but 3.13.2 Backup production version

 3.13.6 /afs/slac/g/cd/soft/ioc/prod/bicApp,
also known as:
/afs/slac/g/cd/soft/ref/epics/
R3.13.6/ioc/bicApp

Planned production version, pointed
at by $BIC

The rest of this sheet has dealt only with the “new” setup, since the “old” is handled very differently, and
since we really, really want to be off the old support completely!

7) Editing Displays

http://www.slac.stanford.edu/grp/cd/soft/pg/Displays.html

8) Setup scripts

http://www.slac.stanford.edu/grp/cd/soft/share/slaconly/how-to/epicsSetup.html

9) (Future) deployment

A document to describe the environment settings necessary to use ESD's software deployment
facility is in http://www.slac.stanford.edu/grp/cd/soft/pg/ReleaseSetup.html.

Gmake - builds in ref
Gmake dev - moves to dev dir on AFS

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

49

Distdev - distribute files listed in manifest to dev dir on production
Gmake new - moves to new dir on AFS Distnew - distribute files listed
in manifest to new dir on production Gmake prod - moves to prod dir on
AFS. Distprod - distribute files listed in manifest to prod dir on
production

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

50

13. Release Announcements
This chapter lists items to think about when advertising a new release.

13.1. Whom to inform and when
A day or two before a major release, obviously inform interested users of your software,
and those whose software will possibly be affected.
Just before any release, even small ones, send an email message to
sw_release@slc.slac.Stanford.edu (see below). This is a heads-up to other developers
who may have released, or are thinking of releasing, to the same directory, because any
one release in a directory sweeps all the other partial releases along with it. Also, it
allows other programmers, who may be chasing a released bug, or other problem, after
your release, to eliminate your release from the list of potential causes of their problem.

13.2. The release announcement email message
After you have tested your changes, but before you cvs commit your changes and start
the release process, send email to “sw_release”. Include the following:

1. In general terms, describe the function of your new release. Target this to the
physicists and other users, or colleagues in the software group

2. Which directory you are going to release (e.g. common/tool). To which level
(e.g. NEW) for the same reason as above

3. What type of files are releasing (e.g. scripts, EPICS displays)
4. Individual filenames only if they will be recognized by anyone and are

particularly important. Remember the release log lists all the files being released
5. Roughly when you intend to start.

For example, from a development unix host you might type:

mail sw_release@slc.slac.Stanford.edu
Subject: Release of common/tool to NEW this afternoon

This afternoon I would like to release common/tool to NEW
to add argument checking to the trimfile script.
CTRL-D

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

51

14. Putting a directory in CVS
This chapter describes the procedure for putting files into the Software Group’s “Version Control System”.
Note that, putting the files in CVS is not enough to make it so they can be released using the new release
procedures. If you want release support, then you will additionally have to add the directories you put in
CVS to the release procedure support system (see 15 below). Additionally, this doesn’t cover IOC
software, which uses CVS tags to keep track of which files go with which version of EPICS.

Since this document only covers the “new” development environment, it only covers the procedure for
software going into the CVS repository whose directory root is at /afs/slac/g/cd/soft/cvs/ ($CD_SOFT/cvs).

14.1. In Outline and Preparation
We shall use the cvs import command, described at
http://www.cvshome.org/docs/manual/cvs-1.11.6/cvs_13.html#SEC105. Import does
whole directories at a time, not individual files, and must be run from the directory which
already contains the files you want to import. You tell it where to put the directory in the
CVS repository.

14.2. Basic Setup Requirements
Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh

14.3. Create or review the directory to be imported into CVS
Check that there are no files in the directory to be imported that you don’t want in CVS.
The import command will ignore and not import only those files which match any pattern
in the CVSIGNORE environment variable, so you may want to change that:
printenv CVSIGNORE

O.* *~ *.class

14.3.1. Importing from an Existing $CD_SOFT/ref Directory
If the directory you want to import into CVS is already in our reference area under
($CD_SOFT/ref), then bear in mind that to re-create the reference directory you have to
delete what’s in there to do the initial checkout. So, it’s a good idea to copy the files out
of the existing ref directory, to a temporary working directory, and import them from
there. E.g., to import into CVS, all the files in all the directories under
$CD_SOFT/ref/common/sys-admin/:
mkdir work

cd work

cp –R $CD_SOFT/common/sys-admin/* .

14.4. Import the Directory
From the directory that contains the files to be imported, issue the cvs import command.
It takes 3 important arguments:

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

52

1. The CVS directory you want to create. This will define where the software
you import will reside in our CVS tree (under $CD_SOFT/cvs), and
therefore also where it will reside in our reference area (under
$CD_SOFT/ref). For instance, if you say cvs import common/tool,
CVS will take all the files in the working directory (like ~/work) and put
them in $CD_SOFT/cvs/common/tool/.

2. "vendor tag" is a free form text string . Our standard for this tag is
CD_SOFT, when we're the vendors.

3. "release tag", is also a free form text string you're supposed to use to
identify the version release id of the software you're putting in CVS. For
EPICS software, we use a release tag like R3_13_6, for all other software,
for the initial release, we use R1_0.

Having worked out the right arguments, issue the cvs import command. The example
below includes an in-line cvs comment. For instance, if ~/work contains all the files you
want to import, then from ~/work, issue:
cvs import –m “Admin tools” common/sys-admin CD_SOFT R1_0

Check the output to verify it imported all the files you want, and no more.

14.5. Check the Reference Directory
Unless your import was under module “epics” (CD_SOFT/ref/epics) our cvs management
scripts should have taken care of creating the new directory in $CD_SOFT/ref for you.
Otherwise, for epics, you should go to $CD_SOFT/and make the first checkout:
cd $CD_SOFT/ref

cvs checkout epics/yourdir

cvs release epics/yourdir
From this point on, the release scripts will keep the release directory up to date.

14.6. Check Releasing Still Works
If the directory you imported was not handled by the release procedure, you’re all done.
If it was, then you should check releasing still works:
mail sw_release@slc.slac.Stanford.edu

gmaketst common/sys-admin

gmakedev common/sys-admin

gmakenew common/sys-admin

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

53

15. Converting Software to new Release Support
This chapter describes how you convert a directory that does have makefiles in it that conform to the old
release support system, to the new one. This is basically a matter of editing the two makefiles, Makefile and
Makefile.Host, so that they use the new makefile include files, those in $CD_SOFT/ref/common/make,
rather than those in $CD_SOFT?ref/common/build, and to change their build root (removing one set of
../).

15.1. Basic Setup Requirements and Preliminaries
If your login process has not already done so, setup the basic environment with source
/afs/slac/g/cd/soft/dev/script/ENVS.csh.

Make sure environment variable CVSROOT is set to /afs/slac/g/cd/soft/cvs (printenv
CVSROOT). If it is not, source $CD_SCRIPT/cvsSetEnv.csh
This procedure incorporates doing a release to check that the conversion worked, so mail
sw_release, to tell them what you are doing (see 6 above).

15.2. cvs checkout
Checkout the directory to be converted (if it’s not in CVS yet, do that first, see 14 above).
For instance, to convert the files in reference directory $CD_SOFT/ref/common/sys-
admin to being released through the new system:
cd

mkdir work

cd work

cvs checkout common/sys-admin

15.3. Convert makefiles
Edit the makefiles. There are two makefiles used in both the old and new systems, sinc
eboth are based on the EPICS application makefile system:
To both Makefile, and Makefile.Host, make the following 4 edits:
Remove one set of ../ from the definition of $(TOP)
Insert the macro definition INCMK=$(CD_COM_MAKE)
Replace ../../etc/CONFIG_BASE with $(INCMK)/CONFIG_BASE
Replace ../../etc/RULES_ARCHS with $(INCMK)/RULES_ARCHS

Check the makefiles build the directory:
gmake

Verify that the makefiles created the right install directories and that they were created in
the directory from which you did the cvs checkout. For instance, in this example we did
the cvs checkout in ~/work, so we should have install directories like ~/work/script/ and
~/work/sun4-solaris2/.

15.4. Release using the new scheme
If everything looks right, cvs commit the changes to the makefiles, and do a release:

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

54

mail sw_release@slc.slac.Stanford.edu

cvs commit

cd $CD_SOFT/ref/common/sys-admin

gmaketst

gmakedev

gmakenew

Basic Users Guide

Basic Users Guide

Date

12/20/05 3:17 PM
Rev

8
Page

55

16. Sweep
This chapter describes how to perform the weekly “sweep”.

A programmer typically releases their software up to the NEW stage of release, which, as described in
previous sections, puts their code, displays, and other files, in a directory named $CD_SOFT/new/ on both
production and development machines. Those “NEW” directories are used as a beta-testing area for the
software, since they are in the PATH of all processes running the control system.

The so called “sweep” procedure, completes the release process, by moving all those files which have been
released to NEW, into PROD, and deleting them from NEW (hence the term “sweep”). Specifically it
moves all the files in $CD_SOFT/new/ to $CD_SOFT/prod/ on development machines and if those files are
also named in a manifest file, they are also copied to the production host’s $CD_SOFT/prod/ (and deleted
from production’s $CD_SOFT/new/).

The sweep is typically carried out once a week, usually Monday morning and is usually carried out by the
group’s admin assistant. That person performs the following steps:

16.1. Sweep Procedure
Log onto cddev on a development (AFS) node. Then issue the following commands:
source /afs/slac/g/cd/soft/dev/script/ENVS.csh

klog17

sweep

The sweep will produce a log file, in $CD_SOFT/log/sweep.log, and send email to the
group when it has completed.

17 It’s very likely you don’t have to klog. The rules for whether you do involve whether you, as the user who logged
into cddev, are a member of the cddev:cddev AFS group, and whether you made an authenticated login or not. The safe
thing to do, if you do not do the sweep often, is to klog. See the Principles of Design.

