
 i

UNIX DEVELOPMENT ENVIRONMENT

Principles of Design

13th September, 2003
Last Revised: 17 March 2005

Greg White, Michael Zelazny, Kristi Luchini
SLAC, Stanford University, California, USA

 iii

Revision History

Date Revision Description Author
09/23/03 1.0 Initial Version Greg White

10/27/03 1.1 Added diagrams for main dirs and release Greg White

11/06/03 1.2 Added CVS for IOC development Greg White
11/19/03 1.3 Added Makefile framework description Greg White

11/23/03 1.4 Added Makefile development and testing Greg White

11/23/03 1.41 Moved Release System Table to BUG Greg White
12/15/03 1.5 Added adding new Functional File Types Greg White

3/17/04 1.6 Added Process Management Chapter Greg White

4/15/04 1.7 Added Process Management Scripts Greg White

3/14/05 1.8 Added Distribution system James Silva

Reference:

See also the Unix Development Environment, Basic Users Guide. That document describes the design of
the mechanisms and tools described in this document.

Modifying this file:

This file is located in $CD_SOFT/html/unix/dev/ug/POD.doc
(http://www.slac.Stanford.edu/grp/cd/soft/unix/dev/ug/POD.doc). It is on the web at
http://www.slac.Stanford.edu/grp/cd/soft/unix/dev/ug/POD.pdf

When modifying this file, please also create the pdf version and put it in the same directory.

Unix Development Environment Principles of Design

Principles of Design Page 5 3/17/05

1. PRODUCTION AND DEVELOPMENT HOSTS ... 7
1.1. THE DEVELOPMENT SYSTEM.. 7
1.2. THE PRODUCTION SYSTEM ... 7
1.3. “PRODONDEV”... 7
1.4. “GATEWAYS”... 7
1.5. NOMENCLATURE ... 8

1.5.1. “on dev”, “in dev”, “on prod”, “in prod” and “prodondev” .. 8
2. PRIMARY DIRECTORIES OF THE UNIX ENVIRONMENT... 9

2.1. TWO FILE-SYSTEMS, ONE DIRECTORY ORGANIZATION ... 9
2.2. PRIMARY DIRECTORIES OF DEVELOPMENT SYSTEM... 10

2.2.1. CVS and the CVS Reference Directory (cvs/ and ref/) ... 10
2.2.2. src/ and tst/ .. 10
2.2.3. dev/, new/ and prod/.. 10
2.2.4. ioc/.. 11

2.3. PRIMARY DIRECTORIES ON PRODUCTION SYSTEMS.. 11
2.4. DIFFERENCES BETWEEN DEVELOPMENT AND PRODUCTION DIRECTORIES .. 11
2.5. ENVIRONMENT VARIABLES FOR SUBDIRECTORIES ... 12

3. FILE PROTECTIONS ... 13
3.1. TOP LEVEL DIRECTORIES CD/ AND CD/SOFT.. 13
3.2. CVS AND REFERENCE DIRECTORIES’ FILE PROTECTIONS ... 13

3.2.1. The AFS ACL/NIS bits Interface .. 14
3.2.2. Changing Protections When Updating the CVS Repository .. 14
3.2.3. Changing Protections When Updating the CVS Reference.. 14

3.3. RELEASE DIRECTORIES’ FILE PROTECTIONS ... 15
3.3.1. addUserRefWrite and removeUserRefWrite ... 15

3.4. THE ACL PROTECTION GROUP HIERARCHY ... 16
3.5. ACTIONS FOR NEW USERS .. 17

4. CVS AND REF DIRECTORY STRUCTURAL LAYOUT.. 18
4.1. REFERENCE DIRECTORY STRUCTURE .. 18

5. THE SOFTWARE BUILD SYSTEM FRAMEWORK .. 20
5.1. REFERENCES.. 20
5.2. THE CD SOFT MAKEFILE FRAMEWORK AND A PROJECT’S MAKEFILES... 20

5.2.1. Required Structure of Makefile and Makefile.Host .. 21
5.2.2. Makefile Framework Hierarchy... 21

5.3. MAKEFILE SUPPORT FOR INSTALL AND RELEASE ... 22
5.3.1. CONFIG_SITE .. 22
5.3.2. RULES.Host .. 25

5.4. DEVELOPING AND TESTING FRAMEWORK MAKEFILES ... 26
5.4.1. Overriding which makefiles are used .. 26

5.5. TO ADD HANDLING FOR A NEW FILE TYPE ... 26
5.5.1. Checkout common/make ... 27
5.5.2. CONFIG_SITE .. 27
5.5.3. RULES.Host .. 27
5.5.4. Test supporting a new file-type .. 28
5.5.5. Release your makfile support for new file-type... 28
5.5.6. Set $CD_SOFT/tst symlink and set Protections.. 28

5.6. SOFTWARE DISTRIBUTION SYSTEM.. 29
5.6.1. Distribution Directory Synchronization .. 30

6. CONTROL SYSTEM HOST PROCESS MANAGEMENT.. 32

Unix Development Environment

6

6.1. FUNCTIONAL REQUIREMENTS AND DESIGN OBJECTIVES ... 32
6.2. DIFFERENT WAYS TO START A PROCESS & WHICH PROCESSES THEY START 32
6.3. ENVIRONMENT DEFINITION.. 33

6.3.1. The Basic Environment Definition (ENVS.csh) .. 33
6.3.2. EPICS environment for each accelerator.. 33

6.4. ENVIRONMENT SETUP FOR EACH PROCESS .. 33
6.4.1. Interactive Login Environments ... 33
6.4.2. Non-login Process Environments... 34
6.4.3. cs scripts and st files ... 35

6.5. PROCESS MANAGEMENT SUPPORT... 37
6.5.1. Prerequisites for process management scripts ... 37

7. CVS FOR IOC SOFTWARE .. 39
7.1. INTRODUCTION.. 39
7.2. CVS REPOSITORY AND REFERENCE AREAS .. 39
7.3. THE REFERENCE AREA ... 40
7.4. TO CHECK OUT A FILE OR DIRECTORY .. 41

7.4.1. To check out and modify more than one file in a directory.. 41
7.4.2. CVS commit directory of files... 42

7.5. TO CHECK OUT AND MODIFY A SINGLE FILE IN A DIRECTORY ... 42
7.5.1. CVS commit a single file... 42

7.6. TO CREATE A BRANCH FOR A FILE .. 42
7.7. TAGS NAMING CONVENTION IN CVS REPOSITORY FOR IOC SOFTWARE ... 43

Unix Development Environment Principles of Design

Principles of Design Page 7 3/17/05

1. Production and Development Hosts
This chapter deals with the distinction between computers (hosts) on which we develop software, and those
on which we run it to control the accelerator.

1.1. The Development System
The Development System is basically the set of “Taylored”1 machines such as tersk,
flora, slcs5 and so on, on which software is written, debugged and version controlled. The
development machines’ file system is AFS, and most are Sun Microsystems machines
running the Solaris operating system. Once developed, the binary and necessary
supporting files, such as scripts, are moved to the Production System.

1.2. The Production System
The Production System is the set of Unix machines which run the operational aspects of
the accelerator complex. These machines use the NFS filesystem, but like the
Development System, they are too mostly Sun Microsystems running Solaris.
Call the host on which software is run for the operational accelerator a “Production host”.
The production hosts of most EPICS related host software are called “gateways” (see
1.4). The production host of IOC software is the IOC on which that software will be run.

1.3. “prodondev”
At present, some significant body of software for the control system is presently run from
Taylored (AFS) machines which are also used for Development, for instance gateways 4
and 5, which run 8-pack and NLCDEV software, and DM displays. Aida running on
slcs6 will be another example. So, those machines are in some sense Development Hosts
which run production software – “production on development”, or “production on
Taylor”, we call that software “prodondev”.

1.4. “gateways”
In this document, the term Production Host is used, where frequently the term “gateway”
may be more familiar. The word gateway has been avoided here though partly because its
definition isn’t clear – it’s roughly understood to mean a host running the gateway EPICS
CA proxy server for purposes of network isolation - and partly because we do have hosts
running production software which are not gateways in this narrow sense.

 Table 1: Taxonomy of control system software “execution mode”

Function “Execution
Mode”

Where is this
hosted

“dev” – software which is in a development directory on a
development system host.

DEV Development
(AFS) hosts

“production on development” – software which is in a
production directory on a development control system host, and
is being used operationally to run the accelerator.

PRODONDEV Development
(AFS) Hosts

“prod” – software which is in a production directory on a
production control system host.

PROD Gateways
(NFS)

Note, if the AFS system, or our connection to it, goes down, “production on development” software will
not be available to run the accelerator complex.

1 Taylor is a remote computer configuration utility developed at SLAC for unix system administration.

Unix Development Environment

8

1.5. Nomenclature
This section describes some especially pedantic distinctions we make and the phrases we
use to label them.

1.5.1. “on dev”, “in dev”, “on prod”, “in prod” and “prodondev”
A potential source of confusion is that, in the software development
environment, both Development and Production machines contain software at
both the development and production stages of release. This is so that
development software can be tested on Production machines – making use of
production databases and production networks and so on, and so that production
software can be exercised on a development host - where it is less invasive to
operations. This leads to the phrases “on dev”, meaning on a development
machine, “in dev” meaning in a development directory, “on production”,
meaning on a production machine, and “in production”, meaning in a production
directory (though not necessarily on production)2.

2 Note that “prodondev” does not merely mean “on dev in prod”, it additionally says that the software is
used to run the accelerator even though it is only on a dev machine.

Unix Development Environment Principles of Design

Principles of Design Page 9 3/17/05

2. Primary Directories of the Unix Environment
This chapter describes the filesystems and important top-level directories used in the Unix control system
environments. First, we describe in what way the development and production hosts are the same in this
respect, and then describe each in more detail, including the important differences.

2.1. Two File-systems, one directory organization
Files on the development system are in the AFS file-system, rooted at /afs/slac/g/cd/soft/.
Files on the production systems are on the NFS file-system, rooted at /usr/local/cd/.

 Table 2: Production and Development Directory Tree Roots

Host Type Root directory Environment Variable
Development /afs/slac/g/cd/soft/ $CD_SOFT
Production /usr/local/cd/soft/ $CD_SOFT

Since EPICS software in general requires many files in support of each application to be
available on production, but that software is developed on development systems, there
must be an organizing principle used for the directory structure on production. The
principle we use is that we keep the released files on production in a directory structure
which largely mirrors the released file-system directories on development. In fact, the
way the automatic deployment system described later works, is to export directories from
release directories on the development hosts, over to same named directories on
production hosts. That is, beneath $CD_SOFT you will find a similar file-system
structure for executable software, on both development and production machines. All the
software development is done on development machines, so the directories for source
code, and build output are only on Development (see Table 3).

Table 3: Directory structures under CD_SOFT on Dev and Prod. The table illustrates schematically the
dispersal of files in the main directories of released software. Source files are in CVS and the “reference”
directories. The reference directories also contain build object files. Executables are delivered to release

directories, and are then escalated through from ref, to dev, new and finally prod. All built executables are left
in ref, and accumulate in prod. Only dev, new and prod are distributed to production machines.

DEVELOPMENT (AFS, eg flora) PRODUCTION (NFS, eg gateways)
$CD_SOFT/cvs/
 gui/
 common/
 app/

Not applicable

 $CD_SOFT/ref/
 gui/.../O.solaris
 common/.../O.solaris
 app/.../O.solaris
 $CD_SOFT/tst/
 disp/
 script/
 sun4-solaris2/

Not applicable

$CD_SOFT/dev/
 disp/
 script/

$CD_SOFT/dev/
 disp/
 script/

All
executables

All
source and
object

All
source

Unix Development Environment

10

DEVELOPMENT (AFS, eg flora) PRODUCTION (NFS, eg gateways)
 sun4-solaris2/ sun4-solaris2/

$CD_SOFT/new/
 disp/
 sun4-solaris2/

$CD_SOFT/new/
 disp/
 sun4-solaris2/

$CD_SOFT/prod/
 disp/
 sun4-solaris2/

$CD_SOFT/prod/
 disp/
 sun4-solaris2/

$CD_SOFT/bck/
 disp/
 sun4-solaris2/

Not applicable

2.2. Primary Directories of Development System
The directories employed in the Development System are described here. These are
rooted at $CD_SOFT, which is set to /afs/slac/g/cd/soft/. This is summarized in Table 4.

2.2.1. CVS and the CVS Reference Directory (cvs/ and ref/)
The ref/3 directory contains a read-only reference version of all the file in the
CVS, repository db, which is itself under cvs/. Additionally, ref/ contains both
the “object” directories (like O.solaris), and the executable (or “install”)
directories (like sun4-solaris/bin) which result from building the source
directories. This is so that we could write the basic makefiles for doing builds of
the software in such as way that they could build software in a developer’s
working directory, or in ref/, without modification. In this way, ref/ is just the
“mega-project” directory, and behaves identically to a developer’s project.

2.2.2. src/ and tst/
In order to help distinguish the CVSed source code from build output, there are
two additional directories under $CD_SOFT, src/ and tst/; src/ contains symlinks
to the source code directories under ref/ (i.e. gui/, common/ etc.), and tst/
contains symlinks to the executable, or “build products” directories built from
what is in src/, eg disp/, solaris/, script/ etc.).

2.2.3. dev/, new/ and prod/
These are the so called “release directories”. They implement a system of
software release escalation, in which new software is successively moved from
dev/ to new/ to prod/ after different levels of testing. They can be thought of as
“alpha”, “beta” and “production” release. The makefile system described below
implements moving them software from one to the next in a well organized way.

3 In the following, directories under $CD_SOFT may be referred to without the $CD_SOFT/ prefix. For
instance, ref/ refers to $CD_SOFT/ref.

All
executables

All
executables

All gateway
executables

Unix Development Environment Principles of Design

Principles of Design Page 11 3/17/05

They each contain the same subdirectories – the install directories of the
makefile build output. Software must use makefiles developed from the scheme
described below to use this automatic release escalation.

Table 4 Important top level directories on Development systems

2.2.4. ioc/
ioc/ contains the build output from host side builds,of EPICS ioc software, and
symlinks to the cvs reference directories for that software. Presently, the
makefiles for this ioc software do not use the system of building and release
escalation that host side software does, so the release esclation directories (dev/
new/ prod/ do not apply to it).

2.3. Primary Directories on Production Systems
The system of directories on the production system is in transition. Until recently, the
directories used on the production system for most EPICS related software were rooted at
/usr/local/pepii/. The primary directories in that file-tree will not be described here
further. The file-tree for the planned directories, to which we have been recently moving,
and whose structure is intended to mirror that found on Development, is rooted at
/usr/local/cd/soft/. This new location therefore contains mainly host side software.

2.4. Differences between Development and Production directories
Note that the cvs/ and ref/ directories present on the development system are not present
on production. That’s because we don’t need source code, nor the intermediate product of
builds, on production. Instead, only the build products, such as executables are needed.
The build products are in the release directories (dev/, new/, prod/).
tst/ does not exist on production because it is only used to contain symlinks to the build
products directories under ref/ on development.

Directory Important Subdirectories Function
cvs/ See Chapter 3.4 The CVS repository

The version controlled db of all critical source files used to
build the control system.

ref/ See Chapter 3.4 The CVS “reference area”
A readable version of each file in the CVS repository, plus
the result of gmaking those files. Executables such as scripts
or displays should not be run from directories under ref/, they
must be run from their release directory (see below).

lib/ Archive (non-dynamic) libs (.a), these are not escalated.
{tst,
dev,
new,
prod }

script/
@sys/lib/
@sys/bin/
@sys/pbin/
javalib/
disp/
matlab/
python/
ora/
include/

The Release Directories
Platform independent non-executable scripts.
Platform dependent object libraries.
Platform dependent executable.
Platform dependent executable of system software.
java class and jar files
Epics .dl files
Matlab executable and .m files
Python scripts
Oracle files, SQL etc
Include files shared among applications

ioc/ <epics-version>/@ IOC applications software. Symlink to ../ref/epics/<version>/

Unix Development Environment

12

Table 5 Important top level directories on Production systems

2.5. Environment Variables for Subdirectories
The developers login environment defines many environment variables for navigating the
directory structures on both Development and Production. Those pertaining to the
primary directories described above, are listed in Table 6.

Table 6: Environment Variables for Primary Directories

DEVELOPMENT (AFS, eg flora PRODUCTION (NFS, eg gateways)
Physical Dir. Env. Variable Physical Dir. Env. Variable
$CD_SOFT/cvs CVSROOT Not applicable
$CD_SOFT/ref
$CD_SOFT/tst

CD_REF
CD_TST

Not applicable

$CD_SOFT/dev CD_DEV $CD_SOFT/dev CD_DEV
$CD_SOFT/new CD_NEW $CD_SOFT/new CD_NEW

$CD_SOFT/prod CD_PROD $CD_SOFT/prod CD_PROD

$CD_SOFT/bck CD_BCK Not applicable

Directory Important Subdirectories Function
lib/ Archive (non-dynamic) libs (.a), these are not escalated.
{dev,
new,
prod }

script/
solaris/lib/
solaris/bin/
solaris/pbin/
javalib/
disp/
matlab/
python/
ora/
include/

The Release Directories
Platform independent non-executable scripts.
Platform dependent object libraries.
Platform dependent executable.
Platform dependent executable of system software.
java class and jar files
Epics .dl files
Matlab executable and .m files
Python scripts
Oracle files, SQL etc
Include files shared among applications

ioc/ <epics-version>/@ IOC applications software. Symlink to ../ref/epics/<version>/

Unix Development Environment Principles of Design

Principles of Design Page 13 3/17/05

3. File Protections
This chapter describes the file protections (ACLs and permission bits) of the important directories of the
unix development environment. The file protections concentrate on the development host. Files on the
production hosts are protected only by being in the cddev account, to which few people have login access
and so is not supposed to be an interactive login account, so it is not discussed further here.
The directory systems with specially designed file protections are:

1. The root of the unix development directory tree hierarchy at /afs/slac/g/cd/soft/ ($CD_SOFT) and
below.

2. The CVS repository rooted at $CD_SOFT/cvs/
3. The Reference area of the files in CVS, and where we build software, at $CD_SOFT/ref/
4. The Release directories: $CD_SOFT/tst/, $Cd_SOFT/dev/, $CD_SOFT/new/ and

$CD_SOFT/prod/

These are described further below:

3.1. Top Level Directories cd/ and cd/soft
The development system is located in the AFS filesystem of the tailored machines
maintained by SCS, at /afs/slac/g/cd/soft/. It therefore uses mainly the AFS “Access
Control List” (ACL) system for file protections (see AFS Users Guide). The ACLs for cd
and cd/soft are summarized in Table 7 :

Table 7 Present ACLs for cd and cd/soft

Directory ACL protection
groups

Mode bits Members

/afs/slac/g/cd/ g-cd rlidwka jjo, brooks,
greg, luchini
zelazny

owner-g-cd rla jjo, brooks
greg,luchini

g-cd As
above

As above

/afs/slac/g/cd/soft/
(CD_SOFT)

g-cd:soft rlidwka Everyone

The owner organization of the principal ACL entries for these directories is given in
Figure 1.

3.2. CVS and Reference Directories’ File Protections
This section describes the file protections of directories maintained by the CVS version
control system, and the “reference” directories for them. The CVS directories are all
under $CD_SOFT/cvs/, the reference area at $CD_SOFT/ref/.

Unix Development Environment

14

Table 8: CVS and REF area ACL Protection Groups

Directory ACL Protection
Group

Mode bits

/afs/slac/g/cd/soft/cvs
(and all dirs below)

owner-g-cd:soft
g-cd:soft
g-cd

rla
rlidwk
rlidwka

/afs/slac/g/cd/soft/ref
(and all reference4 dirs below)

owner-g-cd:soft
g-cd:soft
g-cd

rla
rlidwk
rlidwka

To write to a CVS directory, or a reference directory, you must be a member of g-cd:soft.
The directories are protected from accidental writes or deletions by having their NIS user
mode bit “w” turned off (see below). The combination of the “w” ACL mode bit being
present in the g-cd:soft protection group entry on the directories, but the user “w” NIS
bit being normally absent on the files in those directories, protects the files, as described
below.

3.2.1. The AFS ACL/NIS bits Interface
From the SLAC AFS User’s Guide: “If the w mode bit is present (in the user
bits of the NIS permission bits), anyone with the write and lookup rights on the
ACL of the file’s parent directory can modify the file; if the w bit is off, no one
can modify the file, not even the owner.” This is true even if the file is owned by
a different user! So, if a file in the repository is owned by zelazny, greg can
write it if the NIS user permission bit for write is on (ie, -rw-r—r--), and not
otherwise. Furthermore greg can chmod u+w the file, even though he is not the
owner, as long as he is a member of an ACL entry of the directory that has the w
mode bit present (eg rlidwk).

3.2.2. Changing Protections When Updating the CVS Repository
The CVS program itself turns the NIS “w” bit on for files in the repository itself
($CD_SOFT/cvs) when it wants to update the file, such as during a “cvs
commit”, or cvs import” operation.

3.2.3. Changing Protections When Updating the CVS Reference
We have special scripts which run “in the background” when a user performs a
cvs commit operation which updates the repository. These scripts automatically
run a “cvs update” on the corresponding reference directory (under
$CD_SOFT/ref/). These are run using the CVS “post-commit” facility and
change the NIS permission bits to allow them to write (see 3.2.1 above).
Given this model for making temporary permissions changes, the permissions
for files in $CD_SOFT/ref/ are handled by:

1. The cvs commit precommit operation sets the NIS user permission bit
of the repository file “on” (chmod +w) before doing a cvs commit.

2. The cvs commit postcommit operation sets the NIS user permission bit
of the repository file “off” (chmod -w) after completing the cvs
commit.

The scripts are $CD_SOFT/ref/common/tool/cvs-precommit and cvs-
postcommit.

4 Remember that directories under $CD_SOFT/ref/ are split into two kinds, “reference” directories (of
CVS), and the first stage release directories. See 3.3, for protection groups for the release directories.

Unix Development Environment Principles of Design

Principles of Design Page 15 3/17/05

3.3. Release Directories’ File Protections
The release directories, $CD_SOFT/tst/, $CD_SOFT/dev/, $CD_SOFT/new/ and
$CD_SOFT/prod/, and below, are protected by the fact that normally, there are no
developers who are members of any AFS protection group which has write privilege to
them. However, there is one protection group, g-cd:soft-rel-write, which does have the
“w” mode bit set. g-cd:soft-rel-write protects the /tst/, /dev/ and /new/ directories. So
programmers can temporarily get write privilege to those dirs by adding themselves to
that group. After they have finished with updating the directory, they remove themselves
from the group.
Only members of g-cd:soft-rel-write’s owning group, g-cd:soft-rel-lib, may add
themselves to g-cd:soft-rel-write. Therefore, write access to the release directories is
restricted to members of the software group and some others, by only putting those
trusted users in g-cd:soft-rel-lib. An identical scheme works to ensure only system
managers can write to the “new” delivery directories for system tools, using ACL groups
g-cd:soft-sys-lib and g-cd:soft-sys-write.

3.3.1. addUserRefWrite and removeUserRefWrite
The scripts $CD_REF/common/tool/addUserRefWrite and
removeUserRefWrite manage adding users to g-cd:soft-rel-write and
removing them in a controlled way. These utilities are called by the release
management script gmakerel, which performs release escalation, to allow the
user temporary access to the release directories. The utilities may also be called
directly should the need arise. addUserRefWrite and removeUserRefWrite also
manipulate g-cd:soft-sys-lib and g-cd:soft-sys-write to ensure only system
managers can release to new.

As a further protection for the “last-chance” production software, $CD_SOFT/prod/ is
owned by the cddev account on development machines, and only that account may write
to it. This is because only cddev is in group g-cd:soft-prod-write. cddev is also a
permanent member of g-cd:soft-rel-write , so that the sweep can delete files from NEW.
Table 9 summarises the ACLs. Note that g-cd:soft and g-cd are not among the protection
groups on the release directories. That is to prevent members of those groups having
write access, which would bypass the protection through g-cd:soft-rel-write.

Table 9 ACL Protections of release directories

Directory Important ACL Entries Mode
bits

Normal
Members

$CD_SOFT/{ref5,dev,new}/
 script/..
 disp/..
 solaris/..
 sys/..
 (etc)

g-cd:soft-rel-lib
g-cd:soft-rel-write

rla
dwk

everyone
no-one

$CD_SOFT/new/sys/.. g-cd:soft-sys-lib
g-cd:soft-sys-write

rla
dwk

sys-admin
no-one

$CD_SOFT/prod/disp/..
 solaris/..
 (etc)

g-cd:soft-prot-write rladwk cddev

5 The directories under $CD_SOFT/ref/ which are rlease directories (those shown) are symlinked from
$CD_SOFT/tst/, so it is actually the ACL of the $CD_SOFT/ref/ directories on which the protection groups
are placed.

Unix Development Environment

16

3.4. The ACL Protection Group Hierarchy
There is a deliberate hierarchy to the ACL protection groups we use. A developer can
only change properties of a protection group, such as to add themselves, if they are a
member of the group’s owning protection group. Membership of the groups is described
in the tables above, the ownership hierarchy is the figure below.

owner-g-cd

g-cd

is owned by

g-cd:soft

is owned by

g-cd:soft-
rel-lib

g-cd:soft-
rel-write

is owned by

is owned by

g-cd:soft-
prod-write

is owned by

Figure 1 Protection Group Hierarchy

g-cd:soft-
sys-lib

g-cd:soft-
sys-write

is owned by

Unix Development Environment Principles of Design

Principles of Design Page 17 3/17/05

3.5. Actions for New Users
When new developers join the software group, we have to add them to the g-cd:soft and
g-cd:soft-rel-lib protection groups. Someone in g-cd has to type a command of the form:
pts adduser –user <user> -group g-cd:soft

pts adduser –user <user> -group g-cd:soft-rel-lib

The user must klog before the pts adduser will take effect.

Unix Development Environment

18

4. CVS and REF Directory Structural Layout
This chapter describes where the different kinds of software, such as EPICS display definitions, scripts,
compilable source code etc, that are in CVS. Use this as a guide when creating new CVS modules in our
repository.

This cannot be an exhaustive list since directories will be added frequently. We give here only a feeling of
the intention of the top levels.

Table 10 CVS Major Directories

Top Level Subdirs Intended Use
. Files not specific to a single application. Typically

ASCII, defined by example, such as scripts, the
makefiles defining the release procedure, etc.

setup/ Scripts defining development environment.
tool/ Script utilities

$CD_SOFT/cvs/common/

make/ Makefiles defining build system
. Graphical display configuration files. $CD_SOFT/cvs/gui/
disp/ EPICS display definitions (dm, dm2k etc).
. Source code and/or configuration files for

application level programs
channelWatcher/ source and configs for channelWatcher program.

$CD_SOFT/cvs/app/

alh/ source and configs for Alarm Handler program.
. Source code and/or configuration files for utilities

and libraries (contrast with $CD_SOFT/cvs/app/).
$CD_SOFT/cvs/util

alh_hrtbeat_mon Source code for alh heartbeat monitor.
. IOC Applications source code and configs.
R3.13.1 Code specific to R3.13.1
R3.13.2 Code specific to R3.13.2

$CD_SOFT/cvs/ioc/

R3.13.6 Code specific to R3.13.6

4.1. Reference Directory Structure
In general, for each cvs directory under $CD_SOFT/cvs/ (Table 10), there is a
corresponding “reference directory” under $CD_SOFT/ref/. These contain a permanently
checked out copy of the files in CVS. We use the reference directory files to actually
build the control system. Additionally, they can be used “as reference”, so you don’t have
to check out a cvs module or use a cvs browser like CVSWEB to look at the files in CVS.
However, the reference directories have an important additional role; this is where
programs and displays are built. Since the intermediate build products, such as object
files, are made in subdirectories of the source code directory by our makefiles, the
reference directories additionally contain build products. Those are typically in
subdirectories named O.<host-architecture>/, such as O.solaris/. Thirdly, the top level
reference directory $CD_SOFT/ref/ also contains the directories which contain the final
outputs of the builds, the executables themselves. See Table 11 for examples of what
goes on under ref/.

Unix Development Environment Principles of Design

Principles of Design Page 19 3/17/05

Table 11 Example REF directories. The example shows 2 EPICS display directories
containing display source code (what's in CVS), plus the intermediate build output directories

(O.solaris), plus the final delivery directory (disp) which contains the output from builds of
displays from all the EPICS display O.solaris directories.

Directories Files
$CD_SOFT/ref/gui/disp/config/pepii/

pepii_tt_main.adl
someotherdisp.adl

$CD_SOFT/ref/gui/disp/config/pepii/O.solaris/ pepii_tt_main.dl
someotherdisp.dl

$CD_SOFT/ref/gui/disp/config/tarf/

tarf.adl
makerfcool.adl

$CD_SOFT/ref/gui/disp/config/tarf/O.solaris/ tarf.dl
makerfcool.dl

$CD_SOFT/ref/disp/ pepii_tt_main.dl
someotherdisp.dl
tarf.dl
makerfcool.dl

c
o
m
p
i
l
e

c
o
m
p
i
l
e

Unix Development Environment

20

5. The Software Build System Framework
This chapter describes the makefile framework which implements the building (compiling and linking),
installation, and release, of Unix Control System Software.
The objective here is to describe those aspects of the build system which a programmer would have to
know in order to add support for handling additional file types, or to modify handling of existing file types,
rather than to describe the system’s mechanism in detail.
Programs we develop ourselves for ourselves (as opposed to 3rd party packages we adapt, and packages we
develop for possible outside consumption), use a variation of the EPICS makefile system we have
developed, to define the build. That makefile framework can build a project for a number of target
platforms, and is intended to provide a level of compiler and linker consistency across all our programs.
Additionally, the makefiles manage software release through the release directories.

5.1. References
See the Basic Users Guide for how the system described here is used by developers.
For a description of the EPICS IOC applications makefile system, on which our makefile
system is based, see the EPICS document IOC Software Configuration Management. Our
system was based on the R3.13.2 version of IOC Configuration makefiles.
For the list of recognized makefile macros which a developer uses to specify a build, such
as PROD, SRCS, USR_LDFLAGS and so on, see specifically the IOC Software
Configuration Management part 4.3 Description of Makefiles6,

5.2. The CD SOFT Makefile Framework and a Project’s Makefiles
The makefile framework files (sometimes confusingly called “config” files), we have
defined, are in $CD_SOFT/ref/common/make/. These are a specialization of the
EPICS R3.13.6 makefiles, in /afs/slac/package/epics/
R3.13.6/base/config/. That is, the EPICS makefile system includes a mechanism
for customizing the makefiles for a given site, like ours, though the CONFIG_SITE*
files. We have had to additionally change some other files, to support things like release
escalation, so we have our own versions CONFIG_SITE files, plus a some others. See the
references above for help with the EPICS makefile system, and the list of supported
macros used to define builds in the system.
Each project must have a very short file named Makefile in each directory (whose basic
job is just to list the subdirectories to be searched for source code to build) and it must
have a Makefile.Host in each source code subdirectory, which defines what to build. If
your program is simple, and you just have a single directory, so it contains the source
code, then you’ll have both these two makefiles in that directory:

Makefile: This file is necessary, but you only need to change it from the
template to add DIRS specifications for each source code subdirectory of your
program. It define the architectures for which to build and the subdirectories to
be searched for more Makefiles.
Makefile.Host: This specifies the build.

You can find templates of these in $CD_REF/common/stds/unix/template/.
The idea is a program’s directory only needs the two short makefiles in its directory to
use the makefile framework. Those two makefiles, Makefile and Makefile.Host, include
the makefiles of the framework. The Makefile.Host specifies what to build. The

6 http://epics.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManuals/iocScm-
3.13.2/buildingComponents.html#DescriptionOfMakefiles

Unix Development Environment Principles of Design

Principles of Design Page 21 3/17/05

framework files define how to build the project’s deliverables from it’s sources, and
release the deliverables.
For examples of how to write Makefile and Makefile.Host in order to build a project, see
the relevant chapters of the Basic Users Guide. That document guides a programmer in
developing displays, scripts, and programs, and so details what to put into Makefile and
Makefile.Host in order that they properly interact with the framework files.

5.2.1. Required Structure of Makefile and Makefile.Host
Both Makefile and Makefile.Host must define a variable TOP, to point relatively
to the "project root". In practical terms this is "enough ../ such that, when the
project is in ref, TOP would be $CD_SOFT/ref/." E.g, the Makefile in
$CD_SOFT/ref/common defines "TOP = .."; and in
$CD_SOFT/ref/common/tool/Makefile, "TOP = ../..". Note,
though, that Makefile.Host is intended to be run from the host specific object
directory that Makefile creates, which is an immediate subdirectory of the
source directory, so the TOP= in Makefile.Host always has one more set of
"../" than the TOP in Makefile, so in
$CD_SOFT/ref/common/tool/Makefile.Host, "TOP =
../../.."

5.2.2. Makefile Framework Hierarchy
The framework proceeds hierarchically from Makefile and Makefile.Host:
 Makefile

 |

 | |

 CONFIG_BASE RULES_ARCHS or RULES_DIRS

 |

 <as below>

 Makefile.Host

 |

 | |

 CONFIG_BASE RULES.Host

 |

 CONFIG

 |

 | | |

CONFIG.SITE CONFIG_SITE.Host CONFIG_SITE.Host.solaris

 Figure 2: makefile hierarchy in $CD_SOFT/ref/common/make ($CD_COM_MAKE)

Unix Development Environment

22

There are a few more makefiles in $CD_SOFT/ref/common/make: RULES_TOP,
RULES_JAVA, RULES.Unix are not included by any file! But they are standard EPICS
makefiles and can be included in Makefiles.

Makefile Primary Uses
CONFIG_BASE Defines INSTALL delivery directory roots

(LIB, BIN, DISP ect), and default HOST type
CONFIG Includes our own versions of files below.
CONFIG_SITE Compiler and linker options; directory

specifications, like defining INSTALL, DEV,
NEW and PROD delivery directory
specifications, macros for defining which files
are at which level of release (eg NEW_PROD,
INNEW_BINS).

CONFIG_SITE.Host Shell command definitions: MV, RMDIR etc.
CONFIG_SITE.Host.solaris Directory specifications for tools and libraries

of utilities used in the Control System, eg
Oracle, X11, gnu, Motif, Perl, Python. Solaris
compiler switches and system include file
directories (for –I specs), system library
directories (for –L and -l specs) etc.

RULES.Host The build rules; the targets "build" "install"
"buildInstall" "dev" and "new", plus all the
rules for installing what from where to where,
moving to dev and moving to new.

RULES_ARCHS What a build consists of (ACTIONS)

Table 12: The makefile framework "config" files and some of their primary uses. Those in
BOLD are the important ones for defining how to handle each functional filetype’s install and

release.

The most important of the EPICS R3.13.6 makefiles a programmer needs to be aware of,
is $EPICS_BASE/config/CONFIG_COMMON, which contains the compiler and linker
options used for each compiler.

5.3. Makefile Support for Install and Release
This section lists the important sections of the makefile framework config files which are
concerned with file install and release. Install and Release is primarily handled by
CONFIG_SITE and RULES.Host.

5.3.1. CONFIG_SITE
Defines the macros for the determining the list of files of each functional filetype, which
should go to the install directory:

BUILD_ARCHS = $(HOST)

Define "install" dirs.

These define where files will be installed by the "install" target. Install
target is that which moves the build products from where they are left by
the "build" target (under a given project directory, such as O.solaris),
to the directory common to all
projects. The install target is the default target in fact - unless you
specifically say "gmake build", the build will be completed and the results
installed. In the ESD Software version of the EPICS build system, the

Unix Development Environment Principles of Design

Principles of Design Page 23 3/17/05

"install" target is that which puts things into the "tst" stage of release
(ie moves stuff to to /ref/<install-dir>), or, if developing in a working
directory, just into <projectroot>/<install-dir>,
like ~/myproj/sun4-solaris2/bin/).

INSTALL_LOCATION = $(TOP)
INSTALL_LOCATION_LIB = $(LIB)
INSTALL_LOCATION_BIN = $(BIN)

INSTALL_BIN = $(INSTALL_LOCATION_BIN)
INSTALL_LIB = $(INSTALL_LOCATION_LIB)
INSTALL_SHRLIB = $(INSTALL_LIB)
INSTALL_SCRPT = $(INSTALL_LOCATION)/script
INSTALL_DISP = $(INSTALL_LOCATION)/disp
INSTALL_dmDISP = $(INSTALL_LOCATION)/dm-disp
The following functional file type instal locations have
not yet been implemented:
INSTALL_CONFIG = $(INSTALL_LOCATION)/build
INSTALL_INCLUDE = $(INSTALL_LOCATION)/include
INSTALL_ORA = $(INSTALL_LOCATION)/ora
INSTALL_MAT = $(INSTALL_LOCATION)/matlab
INSTALL_HTML = $(WWW_DIR)
INSTALL_JAVA = $(JAVALIB)

"dev" target release directories.

Note re Non-executable Scripts: There is no escalation of non-executable
scripts past DEV, so there is no NEW_SCRPT or PROD_SCRPT. This is
because there is no search PATH function for scripts, so there is no
way to implement an automatic release scheme.

DEV_LOCATION = $(INSTALL_LOCATION)/../dev
DEV_BIN = $(DEV_LOCATION)/$(BUILD_ARCHS)/bin
DEV_LIB = $(DEV_LOCATION)/$(BUILD_ARCHS)/lib
DEV_SHRLIB = $(DEV_LIB)
DEV_DISP = $(DEV_LOCATION)/disp
DEV_dmDISP = $(DEV_LOCATION)/dm-disp
DEV_SCRPT = $(DEV_LOCATION)/script

"new" target release directories.

NEW_LOCATION = $(INSTALL_LOCATION)/../new
NEW_BIN = $(NEW_LOCATION)/$(BUILD_ARCHS)/bin
NEW_LIB = $(NEW_LOCATION)/$(BUILD_ARCHS)/lib
NEW_SHRLIB = $(NEW_LIB)
NEW_DISP = $(NEW_LOCATION)/disp
NEW_dmDISP = $(NEW_LOCATION)/dm-disp

"sweep" target release directories.

"sweep" target is defined only in $CD_SOFT/ref/Makefile.

PROD_LOCATION = $(INSTALL_LOCATION)/../prod
PROD_BIN = $(PROD_LOCATION)/$(BUILD_ARCHS)/bin
PROD_LIB = $(PROD_LOCATION)/$(BUILD_ARCHS)/lib
PROD_DISP = $(PROD_LOCATION)/disp
PROD_dmDISP = $(PROD_LOCATION)/dm-disp

#==

Map functional-file type to install directory.

These macros pre-pend the install
directory pathname to the head of each file defined in the functional
filetype macro (for instance, prepends INSTALL_BIN to the head of each
file in the PROD macro defined in Makefile.Host. The result will match,
at runtime after macro expansion, a rule in the list of INSTALL_* rules
toward the end of RULES.Host.

INSTALL_PROD = $(PROD:%= $(INSTALL_BIN)/%)
INSTALL_LIBS = $(LIBNAME:%= $(INSTALL_LIB)/%)

Unix Development Environment

24

INSTALL_SHRLIBS = $(SHRLIBNAME:%=$(INSTALL_SHRLIB)/%)
INSTALL_SCRIPTS = $(SCRIPTS:%= $(INSTALL_BIN)/%)
INSTALL_SCRPTS = $(SCRPTS:%= $(INSTALL_SCRPT)/%)
INSTALL_DISPS = $(DISPS:%= $(INSTALL_DISP)/%)
INSTALL_dmDISPS = $(dmDISPS:%= $(INSTALL_dmDISP)/%)
The following are not supported yet:
INSTALL_HTMLS = $(HTMLS:%= $(INSTALL_HTML)/$(HTMLS_DIR)/%)
INSTALL_CONFIGS = $(CONFIGS:%= $(INSTALL_CONFIG)/%)
INSTALL_ORAS = $(ORAS:%=$(INSTALL_ORA)/%)
INSTALL_MATS = $(MATS:%= $(INSTALL_MAT)/%)
INSTALL_INC = $(INC:%=$(INSTALL_INCLUDE)/%)
INSTALL_OSINCLUDE = $(INSTALL_INCLUDE)/os/$(ARCH_CLASS)
INSTALL_OSINC = $(OSINC:%= $(INSTALL_OSINCLUDE)/%)

Map functional file type to DEV release directory.

As defined above for the install directory, one DEV release directory
must be defined for each functional file type. These have a slightly
more compilated
syntax than the INSTALL* macros above only because the directory part
of the functional file-type list macros' values (<PROD>, <SCRIPT>) and
so on, must be stripped off. They must be stripped because there will
be a directory name in the value of
PROD, SCRIPT etc, in the case of releasing software that is not
in the same directory as the Makefile.Host file, such as releasing external
packages from afs/slac/package through Makefile.Hosts under
$CD_SOFT/ref/ext/.

DEV_PROD = $(patsubst %,$(DEV_BIN)/%,$(notdir $(PROD)))
DEV_LIBS = $(patsubst %,$(DEV_LIB)/%,$(notdir $(LIBNAME)))
DEV_SHRLIBS = $(patsubst %,$(DEV_LIB)/%,$(notdir $(SHRLIBNAME)))
DEV_SCRIPTS = $(patsubst %,$(DEV_BIN)/%,$(notdir $(SCRIPTS)))
DEV_SCRPTS = $(patsubst %,$(DEV_SCRPT)/%,$(notdir $(SCRPTS)))
DEV_DISPS = $(patsubst %,$(DEV_DISP)/%,$(notdir $(DISPS)))
DEV_dmDISPS = $(patsubst %,$(DEV_dmDISP)/%,$(notdir $(dmDISPS)))

Map functional file type to NEW release directory.

As defined above for the install directory, one NEW release directory
must be defined for each functional file type. These again have a slightly
more compilated than for INSTALL or DEV above, because in this case
the list of files of each functional file-type must be found by looking
in the DEV release directory, and filtering out all those file that were
not in the user's Makefile.Host's functional file-type assignment. For
instance, to make NEW_PROD (the list of executables that should be escalated
to new, we look at all the files in DEV_BIN (INDEV_BINS), and filter that
list for those which were in the users PROD list (PROD), which are also
presently at the dev level of release (DEV_PROD).

INDEV_BINS = $(wildcard $(DEV_BIN)/*)
INDEV_LIBS = $(wildcard $(DEV_LIB)/*)
INDEV_DISPS = $(wildcard $(DEV_DISP)/*)
INDEV_dmDISPS = $(wildcard $(DEV_dmDISP)/*)

NEW_PROD = $(patsubst $(DEV_BIN)/%,$(NEW_BIN)/%,$(filter $(INDEV_BINS),
$(DEV_PROD)))
NEW_SCRIPTS = $(patsubst $(DEV_BIN)/%,$(NEW_BIN)/%,$(filter $(INDEV_BINS),
$(DEV_SCRIPTS)))
NEW_LIBS = $(patsubst $(DEV_LIB)/%,$(NEW_LIB)/%,$(filter $(INDEV_LIBS),
$(DEV_LIBS)))
NEW_SHRLIBS = $(patsubst $(DEV_LIB)/%,$(NEW_LIB)/%,$(filter $(INDEV_LIBS),
$(DEV_SHRLIBS)))
NEW_DISPS = $(patsubst $(DEV_DISP)/%,$(NEW_DISP)/%,$(filter $(INDEV_DISPS),
$(DEV_DISPS)))
NEW_dmDISPS = $(patsubst $(DEV_dmDISP)/%,$(NEW_dmDISP)/%,$(filter
$(INDEV_dmDISPS), $(DEV_dmDISPS)))

Define pre-requisite locations for sweep Makefile.

INNEW_BINS = $(wildcard $(NEW_BIN)/*)
INNEW_LIBS = $(wildcard $(NEW_LIB)/*)

Unix Development Environment Principles of Design

Principles of Design Page 25 3/17/05

INNEW_DISPS = $(wildcard $(NEW_DISP)/*)

5.3.2. RULES.Host
RULES.Host specifes the build rules, that is, what to do to build, install, and release (to
dev or new) each kind of file. Notice that the system knows how to install (to the first
level of release
all:: install

build:: inc

build:: $(LIBTARGETS) $(dmDISPS) $(PROD) $(INSTALLS)
 @echo "\n"$(BOLD)"Actions to build successfully completed"
$(NOBOLD)

inc:: $(INSTALL_INC) $(INSTALL_OSINC)

rebuild:: clean install

install:: buildInstall
 @echo "\n"$(BOLD)"Actions to install successfully completed"
$(NOBOLD)

buildInstall :: build $(TARGETS) $(INSTALL_PROD) $(INSTALL_LIBS)
$(INSTALL_SHRLIBS) $(INSTALL_SCRIPTS) $(INSTALL_HTMLS) $(INSTALL_CONFIGS)
$(INSTALL_ORAS) $(INSTALL_SCRPTS) $(INSTALL_MATS) $(INSTALL_dmDISPS)
$(INSTALL_DISPS)

Release escalation targets for dev and new levels of release.

SCRPTS are not escalated past dev.

dev: $(DEV_PROD) $(DEV_LIBS) $(DEV_SHRLIBS) $(DEV_SCRIPTS) $(DEV_SCRPTS)
$(DEV_dmDISPS) $(DEV_DISPS)
 @echo "\n"$(BOLD)"Actions to release to DEV successfully
completed" $(NOBOLD)

new: $(NEW_PROD) $(NEW_LIBS) $(NEW_SHRLIBS) $(NEW_SCRIPTS) $(NEW_dmDISPS)
$(NEW_DISPS)
 @echo "\n"$(BOLD)"Actions to release to NEW successfully
completed" $(NOBOLD)

RULES.Host additionally contains all the INSTALL, DEV and NEW rules, that manage
local installation, and moving to dev and new.
Note, the Left-Hand-Sides of these rules actually match the instantiations of the
INSTALL_*S, DEV_*S and NEW_*S macros defined in CONFIG_COMMON. That is,
those macros expand to fully qualified file names, which then match these Left-Hand-
Sides:
$(INSTALL_BIN)/% : %
 @echo "\nInstalling executable $? to $(INSTALL_BIN)"
 @$(INSTALL_PRODUCT) -d -m 555 $? $(INSTALL_BIN)

$(INSTALL_LIB)/%.a: %.a
 @echo "\nInstalling library $? to $(@D)"
 @$(INSTALL_LIBRARY) -d -m 644 $? $(INSTALL_LIB)
…
$(DEV_BIN)/% : $(INSTALL_BIN)/%
 @$(INSTALL_DEV) -d -m 555 $? $(DEV_BIN)

$(DEV_LIB)/%.a: $(INSTALL_LIB)/%.a
 @$(INSTALL_DEV) -d -m 644 $? $(DEV_LIB)
…

Unix Development Environment

26

$(NEW_BIN)/% : $(DEV_BIN)/%

 @$(INSTALL_NEW) -d -m 555 $? $(NEW_BIN)

$(NEW_LIB)/%.a: $(DEV_LIB)/%.a

 @$(INSTALL_NEW) -d -m 644 $? $(NEW_LIB)

5.4. Developing and Testing Framework Makefiles
A nice feature of our makefile system, is that the system for build, install, dev release, or
new release, can all be developed and tested very easily from a developer's working
directory. That is, even if working on the system for "gmake new", the system will do
release escalation all locally in the developer's working directory, without affecting the
real “new” release directories in /afs/slac/g/cd/soft/new.
No change to any makefile or environment variable is needed. Since the tree under
$CD_SOFT/ref/ is just the meta-project of all projects, and that includes the release
escalation system, and all operations are relative to TOP, exactly the same gmake
commands work in your local directory as in $CD_SOFT/ref/ and they deliver to places
relative to your working directory.
However, since the primary function of gamketst, gmakedev and gmakenew, are to
unlock the file locking protections for the $CD_SOFT release directories and to log you
actions, you have to use the pure gmake commands that each of those commands wrap,
see Table 13: gmake wrappers for unlocking protections on release directories.

Command Wraps
gmaketst gmake

gmakedev gmake dev

gmakenew gmake new

Table 13: gmake wrappers for unlocking protections on release directories

So, to test modifications to the "dev" release system macros and such, type "gmake dev"
instead of "gmakedev". Recall that "prod" release is done by the sweep, which is defined
entirely in the sweep rule in $CD_SOFT/ref/Makefile.

5.4.1. Overriding which makefiles are used
If you have made local changes to common/make, and want to test them,
override the definition of INCMK (don't use ~/work, ~ is only recognized by c-
shell, but gmake does shell operations in bourne). E.g.:
cd ~/work/app/project
gmake dev INCMK=$HOME/work/common/make
The above simulates a release to dev in your working directory (in this case it
will put build products under ~/work/dev/…) using local makefiles.

5.5. To Add Handling for a New File Type
This section describes how you would add to the makefile framework files to add a new
“functional file-type”. The functional file-types are, for instance, SCRIPTS, DISPS,
LIBRARY and so on. They are designations of a “kind” of file that the makefile system
knows how to deal with. Each functional file-type goes into some directory, but more
than one functional-file type can go into one directory. For instance, both PROD and
SCRIPT functional file types go into the INSTALL_PROD directory. Sounds

Unix Development Environment Principles of Design

Principles of Design Page 27 3/17/05

complicated? It’s not; we only need to change 2 makefiles to add support for a new
functional file type, CONFIG_SITE and RULES.Host.

In the following example, we will add support for a new functional file type “CONF”,
which was added to be the way to release general kinds of configuration file: That is, we
want the makefiles to understand a line like this in a Makefile.Host:
CONF = elogTemplate.xml

The following assumes you know how use CVS. Also, CONF is only released to dev, so
the following only describes how to support releasing a new kind of file up to dev.
However, support for releasing to new is also done in these same files – just follow the
pattern; sweeping is done by $CD_SOFT/ref/Makefile, and you will have to edit that file.

5.5.1. Checkout common/make
The makefile system framework files are in common/make
cvs co common/make

5.5.2. CONFIG_SITE
We need to add macros for CONF to CONFIG_SITE. These are from various
places towards the top of CONFIG_SITE. The existing lines are omitted for
clarity:
INSTALL_CONF = $(INSTALL_LOCATION)/conf

…

DEV_CONF = $(DEV_LOCATION)/conf

…

INSTALL_CONFS = $(CONF:=%= $(INSTALL_CONF)/%)

…

DEV_CONFS = $(patsubst %,$(DEV_CONF)/%,$(notdir $(CONF)))

…

5.5.3. RULES.Host
We will add to RULES.Host in two places: the first is to add to the prerequisites
of the rules that say what to build when someone types “gmake”, and the second
is where it says how to build those things:
First, add to the buildInstall and dev rules:
buildInstall :: build $(TARGETS) \

 ...

 $(INSTALL_CONFS)

dev: $(DEV_PROD) $(DEV_LIBS) $(DEV_SHRLIBS) $(DEV_SCRIPTS)
$(DEV_SCRPTS) $(DEV_dmDISPS) $(DEV_DISPS) $(DEV_INCLUDES)
$(DEV_CONFS)

 @echo "\n"$(BOLD)"Actions to release to DEV successfully
completed" $(NOBOLD)

Then tell RULES.Host how to make INSTALL_CONFS and DEV_CONFS.
Although it doesn’t immediately look like the following does that, because the
left-hand-sides don’t seem to match the right-hand-sides of the rules above, they
do, honestly! Once gmake has expanded INSTALL_CONFS, the resulting files
match the left-hand side of the following rules:

Unix Development Environment

28

$(INSTALL_CONF)/%: %

 @echo "\nInstalling config file $? to $(@D)"

 @$(INSTALL) -d -m 444 $? $(INSTALL_CONFIG)

$(INSTALL_CONF)/%: ../%

 @echo "\nInstalling configuration file $? to $(@D)"

 @$(INSTALL) -d -m 444 $? $(INSTALL_CONF)

Note, the apparent mismatch between INSTALL_CONFS and
INSTALL_CONF. That isn’t a mistake – check what we added to
CONFIG_COMMON.
Now add the same rule for escalating CONFS to dev
$(DEV_CONF)/%: $(INSTALL_CONF)/%

 @$(INSTALL_DEV) -d -m 444 $? $(DEV_CONF)

Two rules were added for INSTALL_CONF and only one for DEV_CONF?
That is because CONF files may be drawn from the directory in which
Makefile.Host runs (eg O.solaris), or from the directory above – hence two
rules. But once CONFs have been released to dev, they can only be in
INSTALL_CONF ($CD_SOFT/ref/conf/).

5.5.4. Test supporting a new file-type
Test your additions in your working directory (see 5.4). Note that the makefile
system will create the delivery directories for you (locally, if you do this in your
own area it won’t do anything in $CD_SOFT):
gmake INCMK=${HOME}/dev/conf/common/make

gmake dev INCMK=${HOME}/dev/conf/common/make

If your new filetype macro releases all the way to NEW, you must also teach the
sweep how to sweep your files. Sweeps are done by the Makefile right at the
root, $CD_SOFT/ref/Makefile. Be very careful when editing this file not to
introduce unintended tabs at the beginning of the lines in the rules, since these
are just very long shell commands executed by the makefile, and make treats
tabs specially.

5.5.5. Release your makfile support for new file-type
If all is well, release the makefiles (CVS commit common/make).
Then do a release that uses the new functional file type you added (CONF in the
above example). The release escalation system will create the delivery
directories for you (in $CD_SOFT/ref/ and $CD_SOFT/dev/), just as it did when
you tested, and put your CONF files in them.
The distribution system will also automatically create the delivery directories on
production (on the gateway) if you put lines like conf/elogTemplate.xml
in the manifest file of the directory you released.

5.5.6. Set $CD_SOFT/tst symlink and set Protections
For a new delivery directory root (ref/conf/, dev/conf, etc are "delivery" root
directories), do 2 additional things:

1. Add symlink from $CD_SOFT/tst/ to $CD_SOFT/ref/ for the delivery
dir, e.g.:

Unix Development Environment Principles of Design

Principles of Design Page 29 3/17/05

cd $CD_SOFT/tst
ln -s ../ref/conf conf

If you have created a new source code area, create the symlink to that
from CD_SOFT/src/.

2. Set the protection groups on the ACL of the delivery directory for the
new files type, in each of ref, dev, plus new and prod if necessary (you
will need to be a member of protection group g-cd to do this) E.g.:

 cd $CD_SOFT/ref/conf

 fs setacl -dir . -acl g-cd:soft-rel-lib rla

 fs setacl -dir . -acl g-cd:soft-rel-write dwki

 fs setacl -dir . -acl g-cd:soft none

 fs setacl -dir . -acl g-cd none

 cd $CD_SOFT/dev/conf

 fs copyacl -fromdir ../../ref/conf -todir .

 fs setacl -dir . -acl g-cd:soft none

 fs setacl -dir . -acl g-cd none

When you've finished it should look like this...
[slcs6]/afs/slac/g/cd/soft/dev/conf> fs listacl

Access list for . is

Normal rights:

 g-cd:soft-rel-write dwk

 g-cd:soft-rel-lib rla

 owner-g-cd:soft rla

 system:slac rl

 system:administrators rlidwka

 system:authuser rl

 That’s all. The above completes support for CONF.

5.6. Software Distribution System
This section describes the design and control flow of the remote distribution scripts used
in the UNIX Development Environment release procedure.
The distribution scripts (distdev, distnew, distprod) are called by the gmakedev, new,
prod, etc. after the gmake has completed. They are run from the
/afs/slac/g/cd/soft/dev/script area.
All of these scripts are wrappers to a master forward distribution script, fwddist. This
script also resides in /afs/slac/g/cd/soft/dev/script.
The fwddist script takes the following arguments:

• $1: Master directory. This is the root directory of your release escalation
environment.

• $2: Source directory. The directory from which files will be distributed (relative
to $1)

Unix Development Environment

30

• $3: Comparison directory. The script will look in this directory for matching
files to compare to files in the source directory (relative to $1)

• $4: Manifest file path.
• $5: Distfile name, path fully specified.
• $6: "sync" Distfile name, path fully specified, to be used for the synchronization

phase.
• $7: YES to run the script in test mode. NO to do the actual distribution.

Some important points to note about the scripts:
The flow of control is pretty straightforward. The script is pretty well commented, so you
should have no problem following it. The script:
- generates a list of files to distribute, based on manifest files
- creates a temporary Distfile containing these files to distribute
- calls rdist with the temporary Distfile as an argument

The release procedure is pretty much the same for all levels, except that for "prod", the
script starts at the top of $CD_REF and goes through all manifest files, whereas for other
release levels, it looks only in the current working directory and its subdirs for manifest
files.
fwddist looks for a file called "manifest" in the release directory. If it does not find one,
the script will exit normally; it will just think that it has no files to send.
The files listed in the manifest file assume that the root dir is the Master directory($1)
specified by the command-line argument. Look at the arguments for the wrapper
scripts(distdev, distnew, etc.), for an example of how fwddist is called.
The fwddist script depends on one external file called fwddist.dft,which is also in
/afs/slac/g/cd/soft/dev/dist. This is what is called a Distfile, which is needed by rdist.
However, it is really just a template distfile, which is read in by fwddist, which then adds
release-specific parameters to the file and writes a temporary distfile to /tmp. Note that
the /tmp Distfile name is created using the release escalation level(dev, new, prod) and a
timestamp, so it is highly unlikely that two release Distfiles would ever have the same
name at the same time.
The version of rdist that we use is NOT the same one that is supported by SCS. So, please
use the following man page for an explanation of the command-line arguments:
http://www.magnicomp.com/rdist/7.0/doc/rdist.html
... the arguments we use ARE different from the UNIX man page on rdist, so, please use
this one instead.
More info, albeit outdated, is also available at the following page:
http://www.slac.stanford.edu/grp/cd/soft/unix/dev/slaconly/RemoteDistribution.html

5.6.1. Distribution Directory Synchronization
For the “new” release escalation level, the fwddist script checks for the
existence of the files it successfully copied to the “new” directory on production
in the “dev” directory on production. To do this, it sends a remote shell
command through ssh to check for the presence of the file, and then calls rm
remotely to remove this file. Note that this can take some time.
For the “prod” release escalation level, fwddist moves all files contained in
manifest files in the CD_SOFT reference area to the “prod” directory. To delete
the files from “new”, the fwddist script does a directory synchronization

Unix Development Environment Principles of Design

Principles of Design Page 31 3/17/05

command, where it rewrites the “new” directory on production to mirror the
“new” directory on development. This generally executes much faster than the
iterative delete in the “new” release procedure.

Unix Development Environment

32

6. Control System Host Process Management
This chapter describes the requirements, objectives, design and implementation, of the various mechanisms
for managing host (eg opi, as opposed to ioc) level processes in the Unix parts of the SLAC Control
System.
Such process are things like the so-called “command server” (cmdSrv), and the processes it itself manages
(such as epics display requests), Channel Watchers, archiver engines, gateway processes, cmlog, AIDA
processes, etc. At the time of writing a list of many of these processes, and the hosts on which they run, is
available at http://www.slac.stanford.edu/grp/cd/soft/share/slaconly/network/opi/index.html.

6.1. Functional Requirements and Design Objectives
The following is a list of the functional and design objectives of the processes
management system described in this chapter:
1. Programmer only has to setup the environment in one place to avoid the possibility

of environment conflict or error.
2. The mechanism for starting, restarting, killing, or just showing the status of a

process, is uniform across processes, and easy to use.
3. The user should not have to know the physical node on which the process usually

runs, or the arguments for ports etc, the system should know that.
4. Support the fact that many, but not all processes, have an instance for each

“accelerator” (pepii, pack, nlcdev), and additionally may have a development
instance.

5. There is some mechanism for starting all the processes in a family together, such as
all AIDA processes.

6. There is a single unified environment, though that environment is cleanly bifurcated
by:

a. Development (afs) and Production (nfs) nodes
b. Development (compiling, building) and runtime (execution)
c. Accelerator (PEPII, NLCDEV, PACK, default “PROD”, DEV, etc).

7. The environment under which each process runs is defined for that process at
runtime, so the processes environment is not subject to conflicts or errors made
elsewhere, and processes started by cmdSrv can get environment updates without
restarting cmdSrv and so restarting all cmdSrv processes on a host.

8. Developers can easily characterize any new processes they create, so they know
which process management tools have to be changed in order to support that process.

6.2. Different Ways to Start a Process & which processes they start

 Developers login all = regular scripts, cs scripts, st type II scripts
 cddev login on prod all
 cddev login on dev all
 unixfoyer cs scripts
 cmdSrv cs scripts
 SCP cs scripts(via cmdSrv), ssh on VMS invokes script on prod unix

Unix Development Environment Principles of Design

Principles of Design Page 33 3/17/05

host
 watchdog st type II
 host startup st type II
 cron job regular scripts; may or may not need environment
warmst st type II
<process>manager st type II

Table 14 Ways to start a process

The object is to unify the way in which processes are started, and the environments in
which they are started.

6.3. Environment Definition
This section describes the shell script files which define the basic development and
runtime environments for the control system.

6.3.1. The Basic Environment Definition (ENVS.csh)
A tcsh shell script, $CD_SOFT/dev/script/ENVS.csh, sets the basic environment
for all logins and processes. That is, it includes all of the core development
environment for developers, and it additionally defines the core runtime
environment of the control system. That is, it sets up a significantly different
environment when run on a development node to when it is run on a production
node.

6.3.2. EPICS environment for each accelerator
Each “realm” or “accelerator” of the control system requires some specific
EPICS setup. The environment for each realm is initialized by a csh shell script
named epicsSetup<realm>. For instance epicsSetupDev, epicsSetupProd,
epicsSetupPepii, epicsSetupNlcdev.

On development systems, ENVS.csh sets up the EPICS “Dev” environment using
epicsSetupDev. On production systems it sets the EPICS “Prod” environment. Since the
EPICS setup required on different accelerators (PEPII, NLCDEV, TARF etc) requires
different EPICS values, users, cs scripts, and st files, should additionally source the
appropriate EPICS Setup script (see templates below). It’s intended that ENVS.csh and
the EPICS setup scripts are designed to allow multiple invocations, each overwriting the
previous environment.

6.4. Environment Setup for each process
From the use cases given in Table 14, it appears that the following must each set up their
own environment, in a similar way: 1) Cddev .cshrc (prod/dev), 2) Developer login, 3)
Type II (st) scripts, and 4) cs* scripts. That is, 1) and 2) are login environments, and 3
and 4) are non-login. The Control System is mainly made up for these non-login
processes.

6.4.1. Interactive Login Environments
This sub-section deals with how the environment is set up for type 1) and 2) –
login, environments.

Unix Development Environment

34

6.4.1.1. Environment setup for login to cddev

source /afs/slac/g/cd/soft/dev/script/ENVS.csh in .cshrc
On both Development (afs) and production (nfs) nodes, the
environment will be set by a call to the standard environment script
ENVS.csh. The environment so set up is different on Development and
Production though, because ENVs.csh includes logic to set things up
differently depending on which of these it’s run on.
Note however, the environment so set up is not intended to be a
complete environment for all cmdSrv processes (which run under
cddev), as was formerly the case. Each cmdSrv process is now required
to set its own environment as described below under Type II st files.

6.4.1.2. Developers login

Just like the cddev login, a developers login should include ENVS.csh.
They may do this directly by editing their .cshrc, or using joining the
HEPiX cd group. The HEPiX scripts for cd will call ENVS.csh

6.4.2. Non-login Process Environments
This sub-section deals with the environment definition for those control system
processes which will be started by cs and st (type II) files, which is the great
majority.
The non-login processes have the significant property that there is often one
instance of the process for each “accelerator”, or “realm”. For instance there is
an archive engine for PEPII, and another for NLCDEV, so the same executable
runs on different hosts.
Also, sometimes, these processes fall into families of that should be managed
together, for instance you want to start all AIDA processes in one go.
The first of these difficulties is dealt with by defining the host for each process,
for each accelerator, in ENVS.csh. The second is dealt with by a system of
scripts used for starting, killing, restarting, families of processes.
Below is described first how each process is formally associated with the hosts
on which it runs, for each “realm” for which it should run, and subsequently
how the cs and st files that start processes know which EPICS environment
should be set up for the process.

6.4.2.1. Process Host Definition for non-interactive processes

The name and hosts of each process is defined in setEnv.csh, which is
called by ENVS.csh. The following is an extract from the relevant part
of setEnv.csh. Note the process names and host names listed for each
processes. See the comments for the syntax of process and host names.

Processes.
Process are each defined by their NAME and HOST, plus optionally the PORT
on whoch they run.
<process>_NAME is the name you type to warmst or other scripts
<process>_HOST[_{DEV,PROD,NLCDEV,PEPII}] are the hosts on which <process>
runs. As many may be defined as necessary. Note that the _<accelerator>
is optional, you don't need to define it if there is only one host
on which the process runs; egs, ERRCLIENT and OOC_COSEVENT_SERVICE.
<process>_PORT specifies a port, if necessary.

CMDSRV

Unix Development Environment Principles of Design

Principles of Design Page 35 3/17/05

setenv CMDSRV_NAME cmdSrv
setenv CMDSRV_HOST_DEV opi00dev00
setenv CMDSRV_HOST_RF opi00rfs00
setenv CMDSRV_HOST_PROD0 opi00gtw00
setenv CMDSRV_HOST_PROD1 opi00gtw01
setenv CMDSRV_HOST_PROD2 opi00gtw02
setenv CMDSRV_HOST_NLCDEV opi00gtw04
setenv CMDSRV_HOST_PEPII slcs1

Orbacus Event service
setenv OOC_COSEVENT_SERVICE_NAME oocCosEventService
setenv OOC_COSEVENT_SERVICE_HOST opi00dev00
setenv OOC_COSEVENT_SERVICE_PORT 4546

Error Client
setenv ERRCLIENT_NAME errClient
setenv ERRCLIENT_HOST opi00dev00

AIDA
setenv AIDA_NAMESERVER_NAME DaNameServer
setenv AIDA_NAMESERVER_HOST_DEV slcs6
setenv AIDA_NAMESERVER_HOST_PROD opi00dev00

setenv AIDA_DASERVER_NAME DaServer
setenv AIDA_DASERVER_HOST_DEV slcs6
setenv AIDA_DASERVER_HOST_PROD opi00dev00

Figure 3: Extract of setEnv.csh, showing part of that part of setEnv in
which each process' name, and the hosts on which it runs, are defined. For

some processes a port number is also defined.

The mechanisms for starting non-interactive st and cs scripts refer to
the names and hosts then symbolically, rather than absolutely, so
changing the host on which a processes for any accelerator, is done
through the setEnv.csh file. For instance, watchdog, unixfoyer, warmst,
procmanager and the processes family managers, refer to hosts by these
names.

6.4.2.2. How does a process know which accelerator it’s part of?

Each process has to define it’s own environment, and that environment
will be different from accelerator to accelerator (PEPII, NLCDEV etc),
so how will processes initialization set up the correct environment for a
processes that’s used on many accelerators?
The answer is that the process’ st or cs script compares the name of the
actual host on which it has been started with each <process-
name>_HOST_<accelerator> environment variable for the process, and
determines for itself which environment to set.
See the example cs and st files below.

6.4.3. cs scripts and st files
cs scripts are those called by cmdSrv to start interactive processes like EPICS
displays for a given accelerator7. Type II st files are those which start non-
interactive “server” type processes. cs scripts are executable SCRIPTS
(delivered to CD_SOFT/{tst,dev,new,prod}/sun4-solaris2/bin/. Type II st files
are also executable scripts, though they are delivered with the STARTUP macro
to CD_SOFT/{tst,dev,new,prod}/sun4-solaris2/sys/. The different delivery
directory allows us to control, through AFS permissions, who may release them.

7 Mostly! Some processes started by cmdSrv are non-interactive and transient, like the report generators, eg
tr00_report.

Unix Development Environment

36

Both cs and st files follow the same basic template. They first source ENVS.csh.
Then, depending on the host on which they’re being run, they source on or more
of the epicsSetup<accelerator> files. Finally they can make some additional
environment changes or additions before starting their executable:
CS script template:
source afs/slac/g/cd/soft/dev/script/ENVS.csh
source epicsSetup<accelerator> based upon host discovery
[source or inline <program-specific-overrides of the above>]
exec <executable-name>

 Type II st script template:
source afs/slac/g/cd/soft/dev/script/ENVS.csh (or
 /usr/local/g/cd/soft/dev/script/ENVs.csh)
[source epicsSetup<accelerator>] based upon host discovery
[source or inline <program-specific-overrides of the above>]
<executable-name>

where executable-name = binary or script

For example, this is the st.cmdSrv file – the type II st file for the cmdSrv
processes:
[tersk05]:app/cmdSrv/script> more st.cmdSrv
#!/bin/tcsh -f

This Script executes (starts) the the commmand server (cmdSrv) for
all accelerator modes.

Auth:
3/16/04 Ron MacKenzie
#==
Mod:
#==

Turn off 'other write' priv on files

umask 002

Source the basic environment setup.

if(-e /afs/slac/g/cd/soft/dev/script/ENVS.csh) then
 source /afs/slac/g/cd/soft/dev/script/ENVS.csh
endif

Make additions to the basic environment depending on the hostmode (aka
"accelerator") on which this invocation of cmdSrv is being made.

setenv hostname_ `hostname`

if ($hostname_ == $CMDSRV_HOST_DEV) then
 if (-e /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupDev) then
 source /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupDev
 endif
else if ($hostname_ == $CMDSRV_HOST_RF || \
 $hostname_ == $CMDSRV_HOST_PROD0 || \
 $hostname_ == $CMDSRV_HOST_PROD1 || \
 $hostname_ == $CMDSRV_HOST_PROD2) then
 if (-e /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupProd) then
 source /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupProd
 endif
else if ($hostname_ == $CMDSRV_HOST_NLCDEV) then
 if (-e /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupNlcta) then
 source /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupNlcta
 endif
else if ($hostname_ == $CMDSRV_HOST_PEPII) then
 if (-e /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupPepii) then

Unix Development Environment Principles of Design

Principles of Design Page 37 3/17/05

 source /afs/slac/g/pepii/ctrl/prod/bin/solaris/epicsSetupPepii
 endif
endif

set path=($path /bin /usr/bin /usr/ucb /usr/local/bin /usr/openwin/bin
/usr/dt/bin /usr/local/X11R5/bin)

cmdSrv uses this to find it's control files (allowable host and cmd
files)
They are unique per host because /usr/ is a shared file system.

setenv CMD_FILES /afs/slac.stanford.edu/g/cd/soft/dev/confsys/`hostname`

Used by this script file to locate the binary executable image.

setenv CMD_BIN /afs/slac.stanford.edu/g/cd/soft/prod/solaris/bin

write log file here. Also unique per host gateway.

setenv CMD_LOG /nfs/slac/g/cd/cmdSrv/`hostname`

close and open new log file this often
(file contains error/debug messages).

setenv CMD_LOG_NHRS 8

Start the server. Send internal debug output to file.
Append to old one if there was a log file from previous startup.

 if (-d ${CMD_LOG}) then
 ${CMD_BIN}/cmdSrv > /dev/null &
 else
 echo "cmdSrv startup failed. Cant access database directory"
 endif
end of file

6.5. Process Management Support
A framework of scripts is available to help manage host processes. These help you see
what’s running, start, restart, or kill processes in the control system, in a controlled way.
In particular, they control the formal names of processes and the hosts on which they run.
This is particularly useful when some executable has to run on specific hosts as part of
the control system for a particular accelerator realm, like PEPII, NLCDEV, or RF, and
when a software suite s made up of a large number of executables which all have to work
together, like Aida.

6.5.1. Prerequisites for process management scripts
The pre-requisites of managing processes using this framework are that the
processes formal name and hosts are defined in setEnv.csh (see Figure 3 above),
and it is started by the execution of a type II startup file (st.* file in
$CD_SOFT/{new,prod}/sun4-solaris2/sys/. Users must also be authenticated to
cddev on each host on which they intended to start or stop processes.

The system is made up of the following scripts:
warmst <process-name> {show, start, restart, kill}
The idea is warmst knows how to start all host processes that can be started by type II
startup files. warmst can show the present status of a given process, by name, or start,
restart or kill it. For start and restart operations, you give the process name and warmst

Unix Development Environment

38

knows the correct type II st file to run it, on the host on which warmst is run, and in the
username which runs warmst. It’s basically warmst’s job to map process names to st files.
procmanager {all, <process-name> }{show, start, restart, kill} [<accelerator-realm>]
Since warmst must be run on the host on which you want to start a processes (by running
its type II startup file), procmanager works out what host its argument process should be
run on, and uses ssh to run an appropriate warmst command on that host to start the
process. procmanager works out which host is the right one, by looking in the
environment variable whose name is the same as the environment variable which defined
the processes name, except it replaces the _NAME part of the environment variable with
_HOST. Eg, for the command server process itself, setEnv.csh defines the following:
setenv CMDSRV_NAME cmdSrv
setenv CMDSRV_HOST_DEV opi00dev00

so procmanager knows that it should start cmdSrv on opi00dev00 when the realm
argument is dev. procmanager runs warmst in the cddev account, so you must be
authenticated to cddev to use procmanager (see BUG for help on cddev authentication).
aidamanager {all, <processname>} {show, start, restart, kill} [<accelerator-realm>]
Each program suite can optionally define a manager script which wraps procmanager. Its
job is to know all of the processes just in that suite. In this example aidamanager contains
a list of all the processes in the Aida suite, and can therefore, for instance, restart all and
only Aida processes on dev with the single command:
aidamanager all restart dev
There are presently only two such process suite manager scripts, aidamanager and
errmanager, but others are envisaged, like cmlogmanager.

Type II st.files

warmst

procmanager

errmanager aidamanager

cmlogmanager etc etc

Figure 4: Process management script call hierarchy

Unix Development Environment Principles of Design

Principles of Design Page 39 3/17/05

7. CVS for IOC Software

7.1. Introduction
Some of our IOC software is different depending on which version of EPICS under
which it is being run. Therefore, for some IOC source files we keep a different file
“branch” for each version of EPICS in which it varies, and our CVS repository uses CVS
"tags" to keep track of which branch of the file goes with which version of EPICS. In this
way, we avoid keeping one repository module - which is a directory and all its
subdirectories - for each version of EPICS. Instead, we keep only one module, called
"ioc", and each file in it is tagged with which versions of EPICS it goes with. The
versions of EPICS a file may go with are one or more of R3.13.1, R3.13.2 and R3.13.6.

7.2. CVS Repository and Reference Areas
Repository: /afs/slac/g/cd/soft/cvs/

Repository directory for IOC software: /afs/slac/g/cd/soft/cvs/ioc/
Reference areas:
 /afs/slac/g/cd/soft/ref/epics/R3.13.1/ioc
 /afs/slac/g/cd/soft/ref/epics/R3.13.2/ioc
 /afs/slac/g/cd/soft/ref/epics/R3.13.6/ioc
There is only one CVS repository directory, or CVS "module" used for all three versions
of EPICS for which we keep software. It's in /afs/slac/g/cd/soft/cvs/ioc/. There is no
subdivision in that directory for each version of EPICS as there is in the reference area.
Rather each individual file is tagged according to which versions of EPICS it belongs to,
and a corresponding branch is created for each file that must be different for different
versions of EPICS. The branch is given a tag name which names the version of EPICS to
which that branch of the file belongs. For instance, for the file ioc/config/CONFIG we
keep two branches, one for EPICS R3.13.6 and one for R3.13.1. If you check out
CONFIG, you could check out the revision of that file at the head of either branch, and
when you put it back into CVS, your new file would be the new head of only that branch.
Now, every file in CVS must have a MAIN branch, this is, if you like, the "default"
branch. All our R3.13.6 ioc software is on the MAIN branch. Therefore, we have not
created a named branch for the R3.13.6 version of each file, it's just assumed that that is
what's on the MAIN branch. So, only if a file specifically must be different for R3.13.1 or
R3.13.2 we create a separate branch for that file. If we do create such a branch, it will be
named BR3_13_1 for the R3.13.1 version, or BR3_13_2 for the R3.13.2 version. See
Branching in the CVS Manual.

Unix Development Environment

40

Figure 5 For ioc/config/CONFIG then, there are two branches, the MAIN branch, and BR3_13_1

7.3. The Reference Area
Unlike the repository, in the reference area we DO keep separate directories for each
version of EPICS. The reference area is in /afs/slac/g/cd/soft/ref/epics/. That directory
contains subdirectories for each of EPICS R3.13.1, R3.13.2 and R3.13.6:

[tersk08]/afs/slac/g/cd/soft/ref/epics> ls -l
total 20
drwxr-xr-x 3 greg cd 2048 Jan 22 13:01 R3.13.1
 HEAD of MAIN branch unless there is a BR3_13_1 branch,
in which case the latest revision in that branch
drwxr-xr-x 3 greg cd 2048 Jan 22 13:04 R3.13.2
 HEAD of MAIN branch unless there is a BR3_13_2 branch,
in which case the latest revision in that branch
drwxr-xr-x 3 greg cd 2048 Jan 22 13:06 R3.13.6
 HEAD of MAIN branch
drwxrwxr-x 9 luchini cd 2048 Jan 15 13:45 iocBoot
drwxr-xr-x 3 luchini cd 2048 Mar 3 18:51 script

Figure 6: Example Reference area for a given file, ioc/config/CONFIG

Unix Development Environment Principles of Design

Principles of Design Page 41 3/17/05

For file ioc/config/CONFIG there is just the MAIN branch (which is always for the
R3.13.6 version), plus one additional branch BR3_13_1 for the R3.13.1 version of
CONFIG. There is no additional branch for R3.13.2, the version of CONFIG used for
R3.13.2 is the R3.13.6 version - which as always is the one on the MAIN branch. Under
each of the reference subdirectories for ioc/ there is reference copy of every file in
cvs/ioc/, so all 3 of the reference subdirectories has an ioc/ subdirectory, and each of
those contain a config/ subdirectory and within that subdirectory, a CONFIG file. So, for
ioc/config/CONFIG, the two branches go into the three reference areas like this:

[tersk08]/afs/slac/g/cd/soft/ref/epics> find . -name CONFIG -print
./R3.13.1/ioc/config/CONFIG - The latest revision on the BR3_13_1 branch
./R3.13.6/ioc/config/CONFIG - The latest revision on the MAIN branch
./R3.13.2/ioc/config/CONFIG - The latest revision on the MAIN branch

This is accomplished using variations of the cvs checkout command, that use the -r and -f
qualifiers, as described below.

7.4. To check out a file or directory
Use cvs checkout with the -r <tag> and -f options. -r <tag> says, "Get me the head
revision of this file on the file's branch that is named <tag> if there is one", the -f says
"but if there isn't any such branch for that file, then just get me the head on the main
branch for that file." Note that -f should really only be used if you check out a directory,
since if you check out a single file you should really know for which version of EPICS
you want to check out that file.

7.4.1. To check out and modify more than one file in a directory
To checkout all R3.13.6 files in a directory, just issue a regular, unqualified, cvs
checkout command, since R3.13.6 files are the MAIN branch. The following
will check out the ioc/config:
cvs co ioc/config

To checkout the R3.13.1 versions of files in a directory in preference to the
R3.13.6 versions, use branch BR3_13_1 with the -r and -f qualifiers. The -r
BR3_13_1 says "get the version of the files tagged BR3_13_1 if there is one."
The -f says "but if there is no version of each file specifically tagged BR3_13_1,
then just get me the MAIN version (that one used for R3.13.6)." Eg:
cvs co -r BR3_13_1 -f ioc/config

To check out the R3.13.2 versions of files in a directory, in preference to the
R3.13.6 versions, use branch BR3_13_2 with the -r and -f qualifiers. The -r
BR3_13_1 says "get the version of the files tagged BR3_13_2 if there is one."
The -f says "but if there is no version of each file specifically tagged BR3_13_2,
then just get me the MAIN version (that one used for R3.13.6)." Eg:
cvs co -r BR3_13_2 -f ioc/config

Unix Development Environment

42

7.4.2. CVS commit directory of files
When you have completed your modifications, perform a cvs commit from your
working directory. For instance, to commit everything you checked-out, cd up to
your directory containing the ioc directory, and issue:
cvs commit -m "nice meaningful comment"

Luckily, the cvs commit command will take care of cvs updating all the relevant
reference areas! This is accomplished by scripts we wrote, which are run in the
background by cvs commit.

7.5. To check out and modify a single file in a directory
The difference for a single file is that you presumably know which version of EPICS
your modifications pertain to, so you shouldn't be using the -f.
The following 3 examples of a cvs checkout command show how to checkout and modify
the file ioc/config/RELEASE. That file exists in 3 different versions, one for R3.13.6, one
for R3.13.2 and one for R3.13.1. The distinction is done through branches. The R3.13.6
version is on the MAIN branch, the R3.13.2 version is on a branch labeled BR3_13_2,
and the R3.13.1 version is on a branch labeled BR3_13_2. See the actual CVSWEB entry
for ioc/config/RELEASE to see this more clearly.
To checkout R3.13.6 files, just issue a regular, unqualified, cvs checkout command, since
R3.13.6 files are the MAIN branch. The following will check out the
ioc/config/RELEASE for R3.13.6. Eg:
cvs co ioc/config/RELEASE

To checkout the R3.13.1 version of a file in preference to the R3.13.6 version, use branch
BR3_13_1 with the -r qualifier. The -r BR3_13_1 says "get the version of this file (or
files, if the argument was a directory) tagged BR3_13_1. Eg:
cvs co -r BR3_13_1 ioc/config/RELEASE

To check out the R3.13.2 version of a file in preference to the R3.13.6 version, use
branch BR3_13_2 with the -r qualifier. The -r BR3_13_2 says "get the version of this
file (or files, if the argument was a directory) tagged BR3_13_2." Eg
cvs co -r BR3_13_2 ioc/config/RELEASE

7.5.1. CVS commit a single file
When you have completed your modifications to the checked out file, perform a
cvs commit from your working directory:
cvs commit –m “meaningful comment”

 The cvs commit will look after updating all the CVS reference areas for each
version of EPICS in which the file you committed had a branch!

7.6. To create a branch for a file
If you want to make it so a file is different depending on which version of EPICS it's
being used with, branch it. To do this you need to use a "branching tag" like
"BR3_13_1". When these operations are complete, you can use cvs checkout commands
like those above to get the specific branch you want. Note that this is always only used
for changing old revisions of a file, not the most recent revision (you can't after all
create a branch where there is no trunk); so the example here shows how to get the
original file from R3_13_1, modify it, and put it back creating a new branch right off that
first version of the file.

Unix Development Environment Principles of Design

Principles of Design Page 43 3/17/05

First checkout the file into your working directory:
cvs co -r R3_13_1 -f ioc/config/RELEASE

cd ioc/config

Then create the branching tag (cvs tag -b) for the file you checked out, giving the branch
name. Note, this operation takes effect on the repository straight away - no cvs commit
need be issued! The example below gives it the tag "BR_13_1". For branching tags there
is a convention in CVS to use a tag name beginning with "B", because it's very difficult
to make sense of tags and branches in CVS status and history listings (like CVSWEB)
without a clue as to which tags were used for branching. For examples, see the table Tags
used in our CVS repository for IOC Software below.
cvs tag -b BR3_13_1

Additionally, you should put the tag on your local copy of the file. Since the cvs tag
command works on the repository, not on your working copy, you need to tell your
working copy to use the new tag (not strictly necessary if you intend to cvs commit
straight way without making any changes to the file, but who knows, you might get
dragged into another project before you get to commit, in which case your changes to this
file would then go to the head revision, not to the new branch)! To do that, cvs update:
cvs update -r BR3_13_1

You can then safely edit this file. Finally, CVS commit
cvs commit -m "Create branch for EPICS 3.13.1"

Our version of cvs commt will take care of updating each of the reference areas
appropriately, assuming you have followed the branch naming convention strictly8.

7.7. Tags naming convention in CVS repository for IOC Software
Note that the tag naming convention must be followed strictly in order for the cvs commit
scripts to correctly update all the reference areas for each branched file.
Specifically, for files which are branched so that they can have a different instance for
each versio of EPICS (or more than one version anyway), the branch name must begin
“B”, and be followed by a string which names a directory under $CD_REF/epics/.

Tag name Purpose
R3_13_1 The original version developed for R3.13.1

There is no R3_13_2 tag used, since all the original, pre CVS, software we
developed for R3.13.2 runs under R3.13.6, so we have not created a separate
original tag for that software.

R3_13_6 The original version of a file developed for R3.13.6
BR3_13_1 The tag used for branches of a file created specifically to support EPICS R3.13.1
BR3_13_2 The tag used for branches of a file created specifically to support EPICS R3.13.2
BR3_13_6 The tag used for branches of a file created specifically to support EPICS R3.13.6

Figure 7 Tag Names for Branching IOC files under each version of EPICS

8 Specifically, DO NOT USE "cvs update -dA" if for some reason you try to update the reference area by
hand. The -dA instructs cvs to reset the sticky tags and get the HEAD of the MAIN branch, that's precisely
what you don't want. That would have no effect on the R3.13.6 branch files, since they are the MAIN
branch, but it would not be what you want when updating the R3.13.1 or R3.13.2 files.

