IFEL/Chicane Based Microbuncher at 800nm

Chris Sears, Eric Colby, Chris Barnes
Stanford Linear Accelerator Center

June 24th, 2004
Motivation

The injector system will produce 50pC bunches with length ~1 ps. At laser wavelength of 800nm this corresponds to ~500 microbunches. This microbunching is interesting for:

- **E-163 Directly:**
 - Allow us to see a net acceleration from laser accelerator test structures

- **Long Term interest:**
 - Improved capture efficiency of electrons.
 - Gain experience producing, controlling, and diagnosing femtosecond scale electron bunches.
 - Short RF linac plus IFEL/chicane microbuncher may serve as an injector for a laser linac for HEP
• Standard RF linac produces low-charge, low emittance ps electron pulses
• IFEL: hybrid-Halbach magnetostatic array type planar undulator, 3 periods, with ~450 MW peak power laser at 800 nm inducing an energy modulation of ~0.15%.
• Chicane: 3 H-magnets, both permanent magnet and coils for fine tuning.

Drawing by C. Barnes.
Details: IFEL

• 1.8 cm period, 3 periods with ~1/2 width end magnets plus end plates.
• Magnets: NdFeB $B_r=1.25$ T, poles: Vanadium permendur
• Adjustable gap: 4-15 mm → $a_w\sim0.3-1$
 • To cover range in γ or possible switch to 1.5µm laser
 • Set to 8mm for 60 MeV, 800nm

Other Numbers:

Width: 4 cm, magnet thickness: 5mm, pole thickness: 4mm

Total Dimensions including Support structure: ~9cmx12cmx12cm

![Undulator Field On-Axis](image1)

![Second Integral](image2)

- Residual translation ~16µm
- Design help from R. Carr of SSRL
Details: Chicane

Chicane strength set by

\[
\frac{\lambda}{2\pi} = \left(\frac{e}{\gamma m_e c}\right)^2 \left(\frac{\Delta \gamma}{\gamma}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} B(z')dz' \right) dz
\]

(comes from finding path length difference inside buncher due to IFEL induced modulation \(\Delta \gamma \))

For field strengths \(~0.4\) T gives chicane length of \(~12\) cm

Remaining dimensions:

Pole width: 40 mm Gap: 7mm (fixed)

Magnets: NdFeB \(B_r = 1.25 \) T
 40x10.5x19(38)mm

Coils: 160 turns with 1.5 Amps max

Copper structure with water cooling to base plate (hardware will likely be inside vacuum).

Total dimensions: 16 x 9 x 18 cm
Emittance Growth & Focusing Effects

- Laser acceleration will require very low emittance: effect of bunching hardware should be considered
- Studied by particle tracking through full 3D fields (imported from Mafia). Inject initially cold beam with transverse spot size of 0.1 mm radius
- Focal lengths:
 - Undulator: $f_x > -300$, $f_y = 6.5$ m
 - Chicane: $f_x = -50$, $f_y = 3$ m
- Emittance growth
 - Undulator: $\Delta \varepsilon_x = 0.06$, $\Delta \varepsilon_y = 0.07$ mm-mrad
 - Chicane: $\Delta \varepsilon_x = 0.1$, $\Delta \varepsilon_y = 0.05$ mm-mrad

Note: Actual incoming emittance ~ 1.25 mm-mrad
Microbunching Simulation

Use 3D particle tracker code with full gaussian laser field

Assuming $E=60\text{MeV}$ with initial rms spread of 42 KeV and IFEL modulation of 60 KeV.
Analytic result obtained in similar manner as bunching in klystrons. Actual microbunches are wider due to electron focusing & laser wavefront curvature. The first 2 corresponding bunch factors are $b_1=0.64$ and $b_2=0.3$ where the longitudinal density is given by

$$\rho = A \left(1 + \sum_n b_n \cos(nk_L z) \right)$$
Beam Monitors Overlap

- In undulator: Monitor transverse laser/e-beam overlap with 2 YAG screens (upstream & downstream of undulator) viewed with common path long-distance microscope (2mm FOV, ~10μm res.)

- Timing overlap:
 - Gross: photodiode & time-of-flight. Resolution ~ 1 ns
 - Fine: Streak camera. Resolution limited by cherenkov radiator (multipath spread of pulse)
Bunching Performance Monitor (still under study)

- Based on coherent transition radiation from single foil
- For single foil CTR, have transverse term
 \[\text{Intensity} \propto \exp \left(-\frac{2\pi^2 \sigma_r^2}{\lambda^2 \gamma^2} \right) \]

This would prevent use for E-163 since beam large compared to \(\lambda \gamma \).
Idea: selectively radiate transversely to eliminate destructive portion of output radiation

Measuring intensity at fundamental and first few harmonics should give bunching factors.

\[\gamma \lambda_{ph} = \text{Or } \sim 100 \text{ microns} \]
Future Research (& discussion ideas)

- All-optical injectors for cheap, compact accelerator
- Will involve small charge (10mA peak current)
- Currently exploring open metal structures for tapering beta
 - (ideas for low phase velocity/tapered beta dielectric structures?)
- Sources ???:
 - Field emitting needle
 - Field/photo emission from backside illuminated thin foil
 (Kretschman geometry)

Structure: planar drift tube linac (similar to foxhole structure. Mikhailichenko AAC 1998 p547)

1D simulation of structure showing capture ~25% of charge
Closing Remarks

• Hardware awaiting commissioning at E-163 experimental area of NLCTA

• Will test IFEL interaction off-resonance with 30 MeV beam available at Stanford SCA
 – Gain experience in laser/e-beam overlap; diagnostics & control

• Still longer term: research all-optical injectors on a chip
 – Both structure & sources