Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

D.T Palmer and R. Akre

Laser Issues for Electron RF Photoinjectors
October 23-25, 2002
Stanford Linear Accelerator Center
1. Introduction
2. Laser System
 1. Oscillator Subsystem
 2. Amplifier Subsystem
3. Phase Noise
4. Discussion
Introduction

SLAC CENTRAL RESEARCH YARD
General Design Parameters of the ORION Facility

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energies</td>
<td>7 MeV (Source); 7-67 MeV (LE Hall); 67-350 MeV (HE Hall)</td>
</tr>
<tr>
<td>Charge per Bunch</td>
<td>0.25 nC optimum, adjustable up to a nominal maximum of 1 nC</td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>1 or 2 (split charge)</td>
</tr>
<tr>
<td>Transverse Emittance</td>
<td>< 2x10^-6 m, normalized rms (0.25 nC)</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>1.8 psec, rms (0.25 nC)</td>
</tr>
<tr>
<td>Charge Stability</td>
<td>2.5% pulse-to-pulse</td>
</tr>
<tr>
<td>Bunch Timing Jitter</td>
<td>0.25 psec, rms</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Average Beam Power</td>
<td>0.67 W at 67 MeV; 3.5 W at 350 MeV (1 nC bunches)</td>
</tr>
<tr>
<td>Electron Source</td>
<td>1.6 cell, S-band (2.856 GHz) Photoinjector, Mg cathode</td>
</tr>
<tr>
<td>Drive Laser</td>
<td>Commercial Ti:Sapphire, 266 nm wavelength, 1 mJ output</td>
</tr>
<tr>
<td>Source RF System</td>
<td>SLAC 5045 Klystron; Solid-State, NLC-type Modulator</td>
</tr>
<tr>
<td>Injector Linac</td>
<td>Two X-band (11.4 GHz), 0.9 m, 30 MV, NLC structures</td>
</tr>
<tr>
<td>High-Energy Linac</td>
<td>Four X-band, 1.8 m, 72 MV, NLC structures</td>
</tr>
</tbody>
</table>
Photoinjector Layout

S-Band 150 cm X-Band

Diagnostics

111.4 cm

f_n = 2856.050 MHz f_D = 2852.586 MHz
250 pC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gun RF gradient</td>
<td></td>
</tr>
<tr>
<td>Peak gun solenoid magnetic field</td>
<td>3.09 kG</td>
</tr>
<tr>
<td>Launch phase (centroid)</td>
<td>33 degrees</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>0.25 nC</td>
</tr>
<tr>
<td>Injected bunch length (hard edge, T)</td>
<td>6.3 ps</td>
</tr>
<tr>
<td>Injected beam radius (hard edge)</td>
<td>0.63 mm</td>
</tr>
<tr>
<td>Initial accelerating gradient in X-band linacs</td>
<td>33.6 MV/m</td>
</tr>
<tr>
<td>Solenoid field in X-band linacs</td>
<td>0.7 kG</td>
</tr>
</tbody>
</table>

ORION Baseline case

J.B. Rosenzweig et al.
NLC Structure Support Studies

• $Q_T = 1 \, nC$
• $E = 67 \, \text{MeV}$
• $r_o = 1 \, \text{mm}$
• $B_z = 3 \, \text{KG}$
• $B_z^a = 750 \, \text{G}$
• $E_z = 120 \, \text{MV/m}$
• $E_z^a = 33 \, \text{MV/m}$

D.T. Palmer et al.

NLC Structure Support
ORION RF GUN Undergoing RF Cold Testing @ UCLA

Neptune Spare RF Gun
Waveguide Production Status

-50 dB Coupler In production
45 H-Bend Completed
X-Band spool piece Completed
X-Band Window
E-Bends
H-Bends
Straight Sections
S-Band Window Completed
5045 to Scarpuus Completed
W\G pumping Station Completed
RF Loads On Hand
-3 dB High Power Coupler On Hand
Laser System Overview

Accelerator Research Department B

- Pump Laser
- Ti:Sapphire Laser Oscillator
- Power Meter
- Power Meter Autocorrelator Spectrometer FROG SHG M2
- Multipass Pump
- Upgrade Path: +2 Multipass Amplifier + R & Z Pulse Shaper
- THG
- FROG Power Meter M2
- RF System
- 79 1/3 MHz RF Osc
- 5 W CW
- 1 W 750-850 nm 80 fs
- RS232
- Spare
- 1 mJ 266 nm
- LEAP Cell
Drive Laser Minimum System Requirements and Performance Enhancements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum System Requirement</th>
<th>Performance Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Repetition Frequency</td>
<td>10 Hz</td>
<td></td>
</tr>
<tr>
<td>Laser Energy ¹</td>
<td>> 1 mJ</td>
<td></td>
</tr>
<tr>
<td>Laser Energy Jitter</td>
<td>< 5% rms</td>
<td>Best Effort</td>
</tr>
<tr>
<td>UV Timing Jitter ²</td>
<td>< 500 fs, rms</td>
<td>Best Effort</td>
</tr>
<tr>
<td>Pulse Length (FWHM)</td>
<td>300 fs – 10 ps</td>
<td></td>
</tr>
<tr>
<td>Temporal Amplitude Profile</td>
<td>Gaussian</td>
<td>Uniform ³</td>
</tr>
<tr>
<td>Radial Amplitude Profile</td>
<td>Approx. Uniform</td>
<td>Best Effort ⁴</td>
</tr>
<tr>
<td>MTBF</td>
<td>5000 hours</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
1) Measured on a Gaussian temporal and radial profile beam.
2) Measured with respect to a 79 1/3 MHz external master RF clock
3) ≤ 5% ripple, peak to peak, 1 ps rise/fall times on 10% - 90% of full amplitude.
4) ≤ 10% ripple, peak to peak
Oscillator Subsystem

Laser Head Controls

- Output Coupler (M1) Horiz. Vert.
- Prism Dispersion Compensation Control (fs)
- Slit Wavelength Selector (fs)
- Slit Bandwidth Selector (fs)
- Laser Head Control Panel
- GT1 Dispersion Compensation Control (ps)
- Brewster Filter Wavelength Selector (PS)
- M1 GT1 (ps) or High Reflector (FS)
- Horiz. Vert.
- Water Inlet Connector
- Purge Breach Valve
- Water Outlet Connector
- Mode Locker Photodiode (ML PD) Connector
- Mode Locker (ML) Connector
- Model 3955 (TC 3955)
- Signal Connector
- Model 3950 (TC 3930)
- Signal Connector
- LTC Photodiode (LTC PD) Connector
- Figure 3-8: The Millennia Xs System (chiller not shown)
ORION LASER OSCILLATOR

FIRST LIGHT @ 800 nm
Photodiode Signal

79.3333 MHz → 12.61 nsec
Spectral Measurement

$\Delta \lambda = 16.1 \text{ nm}$
Autocorrelation Measurement
Autocorrelation Calibration

\[
\frac{T}{t} = 28.33 \frac{\text{psec}}{\text{msec}}
\]
Accelerator Research Department B

Amplifier Subsystem

Evolution X

Spitfire

Tripler

Diode Pumped Nd:YLF
10 mJ @527 nm 1KHz

Regenerative Amp +
Multi-pass Stage +
future upgrades
Phase Noise Circuit Diagram

VCO

3 dB Coupler

Δθ

Calibration

LASER

Photodiode signal

Mixer

1.9 MHz LP

O-Scope
0.142° = 1 mV

0.035° @ 79 1/3 MHz

1.28 psec @ 2856 MHz
R. Akre and B. Cowan
Accelerator Research Department B

△Τ ~ 500 fsec

Bandwidth: 1 Hz – 1 MHz

R. Akre and B. Cowan

Battery Powered External Diode 04/12/02

SSB Spectral Density dBc/ RBW @ 476 MHz

Measurement Noise Floor

RBW = 0.076

Timing Jitter

Frequency Hz - Start of Integration

Battery Powered External Diode 04/12/02

SSB Spectral Density dBc/ RBW @ 476 MHz

Measurement Noise Floor

RBW = 38.147

Timing Jitter

Frequency Hz - Start of Integration
Possible Noise Sources

- AM/PM conversion of Pump Noise
- PZT Response
GO GIANTS !!!