Reference for Field Perturbation Measurements

In a non resonant perturbation measurement, the change in the reflection coefficient, ΔS_{11}, is given by

$$\Delta S_{11} = -\frac{j\omega}{2P_i} \left\{ \varepsilon_0 E_0^2 \left(\alpha_{Ep} \cos^2 \theta_E + \alpha_{En} \sin^2 \theta_E \right) + \mu_0 H_0^2 \left(\alpha_{Mp} \cos^2 \theta_M + \alpha_{Mn} \sin^2 \theta_M \right) \right\}$$

where P_i is the incident power and ω is the (angular) RF frequency;
α_{Ep} and α_{En} are the electric polarizabilities for electric field parallel and perpendicular to the axis of the perturbation, respectively;
α_{Mp} and α_{Mp} are the magnetic polarizabilities for magnetic field parallel and perpendicular to the axis of the perturbation, respectively. Note that there is a sign difference between the equation above and eq. (35) of Steele. His negative sign is incorporated into the polarizabilities.

θ_E and θ_M are the angles between the axis of the perturbing object and the impressed electric and magnetic fields, respectively.

In a resonant perturbation measurement, the change in the frequency, $\Delta \omega$, is given by

$$\frac{\Delta \omega}{\omega_0} = \frac{\omega - \omega_0}{\omega_0} = -\frac{1}{4U} \left\{ \varepsilon_0 E_0^2 \left(\alpha_{Ep} \cos^2 \theta_E + \alpha_{En} \sin^2 \theta_E \right) + \mu_0 H_0^2 \left(\alpha_{Mp} \cos^2 \theta_M + \alpha_{Mn} \sin^2 \theta_M \right) \right\}$$

where U is the stored energy.

Polarizabilities can be calculated using the results in Section 7.3 and Table 12.1 of Collin. They can be expressed in terms of the volume, V, of the object and two functions L_p and L_n. The electric polarizabilities are

$$\alpha_{Ep} = \frac{V}{L_p + 1/\chi_E}; \quad \alpha_{En} = \frac{V}{L_n + 1/\chi_E}$$

where χ_E is the electric susceptibility

$$\chi_E = \frac{\varepsilon - \varepsilon_0}{\varepsilon_0}$$

The electric polarizability of a conductor is obtained by the limit $\chi_E \rightarrow \infty$.

The magnetic polarizabilities are

$$\alpha_{Mp} = \frac{V}{L_p + 1/\chi_M}; \quad \alpha_{Mn} = \frac{V}{L_n + 1/\chi_M}$$

where χ_M is the magnetic susceptibility

$$\chi_M = \frac{\mu - \mu_0}{\mu_0}$$

The magnetic polarizability of a conductor is obtained by the limit $\chi_M \to -1$.

The values of the functions L_p and L_n for a sphere, needle, and disk are given in Table 1 below.

Table 1: Functions for Calculating Polarizabilities

<table>
<thead>
<tr>
<th>Sphere of radius a</th>
<th>$V = \frac{4}{3}\pi a^3$</th>
<th>$L_p = L_n = \frac{1}{3}$</th>
</tr>
</thead>
</table>

A needle with length $= 2a$ and diameter/length $= \beta$
($p \Rightarrow$ parallel to the long axis of the needle)

| $V = \frac{4}{3}\pi a^3 \beta^2$ | $E = \sqrt{1 - \beta^2}$ | $L_p = \frac{\beta^2}{2E^3} \left[\ln \left(\frac{1 + E}{1 - E} \right) - 2E \right]$ | $L_n = \frac{1 - L_p}{2}$ |

A disk of radius $= a$ and thickness/diameter $= \beta$
($n \Rightarrow$ perpendicular to the disk)

| $V = \frac{4}{3}\pi a^3 \beta$ | $E = \sqrt{1 - \beta^2}$ | $L_n = \frac{\beta}{E^3} \left[\frac{E}{\beta} - \tan^{-1} \left(\frac{E}{\beta} \right) \right]$ | $L_p = \frac{1 - L_n}{2}$ |

* Needle and disk approximated as spheroids.

MATLAB functions have been written to calculate these polarizabilities. They have dimensions and susceptibility as arguments.

- `sphere(a,chi)` polarizability for a sphere
- `needle(a,beta,chi)` polarizability of a needle
- `disk(a,beta,chi)` polarizability of a disk

Use $\chi = \infty$ for the electric polarizability of a conductor and $\chi = -1$ for the magnetic polarizability of a conductor.
Polarizabilities of Conducting Needles and Disks. To be compared with figure 10.8 and 10.9 of Ginzton and figures 2 and 3 of Maier and Slater.