Toward a 5 TeV $e^+e^-$ Collider

Accelerator Research Department B,
SLAC, Stanford University
http://beam.slac.stanford.edu
Our Charge

Invent, Design, Build & Commission

a 1 GeV/m x 1m linac,

with a technology scalable to a 5TeV e+e- collider.
How to Invent an Accelerator?

Problem:
1 GeV/m => structure damage?
Gradients Today
5 TeV Discussions at Snowmass

Themes

lasers & beams
laser wakefield acceleration
$\gamma\gamma$ collider
klystrons & gyrotrons
short-bunch wakefields
superconducting linacs & technology
THz radiation
dielectric accelerators
mm-wave accelerators & microfabrication, LIGA

Directions

SCRF Padamsee, Cornell
30GHz Two-Beam - Westenskow, LBNL
    Tube Driven - Wilson & Irwin, SLAC
90GHz Dielectric - Gai, ANL
    Conducting - Song, ANL, Whittum & Siemann, SLAC
1THz Chattopadhyay, Zolotorev - LBNL
Laser Structure-Based, Huang, Stanford
    Plasma-Based, [Esarey & Multitudes]
Beam Structure-Based, Gai, ANL
    Plasma-Based, UCLA
$\gamma\gamma$ Kim, Xie, LBNL
## Status of 5 TeV Concepts

<table>
<thead>
<tr>
<th>Concept</th>
<th>Power Source</th>
<th>Distance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCRF</td>
<td>100MV/m</td>
<td>60km</td>
<td>SC materials research, site</td>
</tr>
<tr>
<td>30GHz TBA</td>
<td>200MV/m</td>
<td>30km</td>
<td>power source prototype, drive beam dynamics, site</td>
</tr>
<tr>
<td>30GHz Tube Driven</td>
<td></td>
<td></td>
<td>sheet beam klystron research, site</td>
</tr>
<tr>
<td>90GHz Dielectric</td>
<td>1GV/m</td>
<td>&lt;10km</td>
<td>power source invention</td>
</tr>
<tr>
<td>90GHz Conducting</td>
<td></td>
<td></td>
<td>power source invention, structure invention</td>
</tr>
<tr>
<td>1THz</td>
<td></td>
<td></td>
<td>power source invention, structure invention</td>
</tr>
<tr>
<td>Laser Structure-Based</td>
<td>10GV/m</td>
<td>~km</td>
<td>module prototype, rep rating, staging</td>
</tr>
<tr>
<td>Laser Plasma-Based</td>
<td></td>
<td></td>
<td>module prototype, rep rating, staging</td>
</tr>
<tr>
<td>Beam Structure-Based</td>
<td></td>
<td></td>
<td>module prototype, staging</td>
</tr>
<tr>
<td>Beam Plasma Based</td>
<td></td>
<td></td>
<td>module prototype, staging</td>
</tr>
<tr>
<td>$\gamma$</td>
<td></td>
<td></td>
<td>[this or neutral beams a required adjunct to other concepts]</td>
</tr>
</tbody>
</table>
Scalings

high \( \gamma \)
neutral beams
Vocabulary

Luminosity

\[ L = \frac{f_{rep}N_b N^2}{4\pi \sigma_y^2 R} \approx 10^{35} \text{cm}^{-2} \text{sec}^{-1} \]

Upsilon

avg \( \gamma \) energy/beam e- energy

\[ Y = 0.833 \frac{N r_e^2 \gamma}{\alpha \sigma_z \sigma_y (1 + R)} = 0.3 - 1000 \]

Beamstrahlung

avg e- energyloss /beam e- energy

\[ \delta_B \approx 1.24 \left( \frac{\alpha^2 \sigma_z}{\gamma r_e} \right) \frac{Y^2}{\left(1 + (1.5Y)^{2/3}\right)^2} = 0.01 - 1 \]
Neutral Beams

- multiple bunch linac
- beam combining
- uncertain initial state
- alignment, optics, N
- instability limits D
Hose Instability
(Rosenzweig, et al.)
Beam Combining

$L_W$ is bounded below due to emittance growth from synchrotron radiation

Neutral beams are required
Structure Research

(at different $\lambda$)

- Channel Guiding for LWFA (Multitudes)
- DDS Structure (Kroll, et al., NLC)
- Laser Linac (Huang & Byer, Stanford)
- mm-wave fabrication (Song, ANL)
Power Sources

- sheet beam klystron
- two-beam accelerator
- gyrotrons
- lasers
Wakefield Research

- planar structure wakefields
- short-bunch wakefields
- SLC collimator wakefield
- wakefield instrumentation
5 TeV Problems

Small Spot?
⇒ IP Limitations

New Structure?
⇒ Wakefields, Beam Dynamics

2cm > λ > 10μm?
⇒ Power Source, Efficiency

G > 100MeV/m?
⇒ Efficiency

Ultra-Low Emittance?
⇒ Source, Beam Dynamics

Parameters for λ = 1cm 3mm 1mm LWFA, LS, PWFA...
ARDB People

Grad Students
Boris Podobedov
David Pritzkau

Prof’s
Bob Siemann
David Whittum

Post-Docs
Ralph Aβmann
Mike Seidel
Ping Chou

Visitors
Dr. Xiaoxi Xu
Prof. Heino Henke

Staff
Angie Seymour
Al Menegat
Accelerator Physics

Alex Chao - wakefields, spin-transport, beam instabilities, nonlinear dynamics, SLC, NLC, LHC

Tom Himel - accelerator controls, accelerator physics for colliders, SLC, PEPII

Roger Miller - microwave linear accelerators, rf structures, guns, SLC, NLCTA, NLC

Ron Ruth - nonlinear beam dynamics, linear colliders, NLCTA, NLC

Bob Siemann - beam measurements, diagnostics & instrumentation, high gradient accelerators, mm-waves, SLC

David Whittum - collective effects, beam interactions with microwaves, plasma, free-electron lasers, mm-waves, SLC

Perry Wilson - microwave linear accelerators, structures, pulse compression, mm-waves SLC, NLCTA, NLC
Courses in Beam Physics

This year...

Electromagnetic Radiation from Relativistic Electrons
Helmut Wiedemann
AP 453A - 3 units - Fall

Collective Effects in Accelerators
Alex Chao
AP 453B - 3 units - Winter

Microwave Linear Accelerators
Roger Miller, Perry Wilson, David Whittum
AP 453C - 3 units - Spring

Previous courses...

Introduction to Accelerator Physics
Bob Siemann

Laboratory Electronics
John Fox

Nonlinear Dynamics in Accelerators
Alex Chao & David Whittum

Beam Dynamics in Storage Rings
Alex Chao

Physics of Free Electron Lasers
David Whittum

In addition, US & CERN Particle Accelerator Schools - see
http://beam.slac.stanford.edu/
Courses This Year

AP 453A: Electromagnetic Radiation from Relativistic Electrons
Helmut Wiedemann (Fall, 3 units)

The emission of electromagnetic radiation from relativistic electron beams is derived from first principles with special attention to coherent and incoherent synchrotron radiation, transition radiation, free electron lasers. This includes discussions of undulator and wiggler radiation with linear and elliptical polarization. The course is intended primarily for graduate students using such radiation for basic and applied research and students in accelerator physics concentrating on source developments and the study of particle beam characteristics and stability. Prerequisite: EM, Optics and special relativity is desirable.

AP 453B: Collective Effects in Accelerators
Alex Chao, (Winter, 3 units)

An intense beam in an accelerator is subject to a variety of instability mechanisms. This course is a systematic introduction of these mechanisms, starting with Maxwell's equations. Topics of interest include wake fields, impedances, Landau damping, intra beam scattering, and the Vlasov equation. The instabilities studied include those for storage rings as well as linacs.

AP 453C: Microwave Linear Accelerators
Roger Miller, David Whittum and Perry Wilson, (Spring, 3 units)

For students with a general interest in electron linear accelerators, in electron linacs for free electron lasers or in future linear colliders. Review of beam transport and emittance concepts; electron injection (guns, bunching and capture); accelerating structures; klystron theory and rf pulse compression; concepts of beam loading and wake potential; introduction to advanced particle acceleration, such as wake field and plasma accelerators.
Wakefield Instrumentation
LIGA
LIGA
(in perspective)
End-Station B Facility

Vehicle Access

Personnel Access

Cart/Forklift Access

41'

50 Ton Crane

Workbenches

Cable

Control

Storage-Racks

Electronics-Racks

PPS Gate

17'

Vehicle Access

50 Ton Crane

ESB Facility
Accelerator Research at the SLC

Linear Collider Beam Dynamics
Ralph Aβmann & Accelerator Dept.

Beam Dynamics of Damping Rings
Boris Podobedov & Accelerator Dept.
Stanford Linear Collider

- e- injector
- 1.2 GeV e- damping for 8.2 msec
- 1.2 GeV e+ damping for 16.4 msec
- 0.2 GeV e+ accelerator
- 33 GeV e- hit target, make e+
- two-mile rf linac
- SLD Detector
- e- injector
Accelerator Physics at the SLC

Instabilities here affect bunch length, jitter in the linac

Structure misalignments here increase the beam emittance

Mobile microwave lab for wakefield studies (C & Ku Band)

Bunch length monitors

Streak Camera (0.7 ps)

Bunch length monitor (Ka Band)

ASSET Facility for wakefield studies (X-Band)

(Streak camera, CCD, gated CCD, spectrum analyzer, Ku Band to audio)
Other Projects

Beam Dynamics in a mm-Wave Linac
Laser-Wakefield 5 TeV Collider “Design”
S-Band Structure Wakefield Studies at LI02
[Mike Seidel]
   a)modelling b)bench measurements on a 10’ section
c)hardware implementation d)commissioning

Sub-Micron Resolution Cavity BPM for Moller Scattering Experiment
[Nicolo deGroot]
   a)modelling b)prototype cavity fabrication
c)cold-testing d)commissioning

Sub-Micron Resolution mm-Wave BPM for X-Ray Light Source
[Bob Hettel, Fritz Caspers]
   a)modelling b)prototype cavity fabrication & cold-testing
c)commissioning

mm Bunch Length Monitor for Precision Z0 Studies
[Jerry Yocky, Frank Zimmermann]
   a)modelling b)hardware implementation
   b)commissioning

S-band Structure Dimpling for Precision Z0 Studies
[Franz-Josef Decker, Pantaleo Raimondi]
   a)theory of long range wakefields, effect of dimpling
   b)implementation on test stacks
c)implementation on five sectors of the SLC d)commission on SLC

Studies of Field Emission on a Resonant Ring
[Xiaoxi Xu]
   a)modelling of a resonant ring b)implementation of ring diagnostics

mm-Wave Tube (“ubitron”) [Klystron Dept.]
   a)modelling b)engineering design
c)fabrication d)commissioning

mm-wave Structure Design [Heino Henke, Norman Kroll]
   a)circuit analysis b)field calculations
c)wakefield analysis
What Has Changed?

New Results

- high-power, short-pulse, efficient lasers
- phase, amplitude, jitter control of $T^3$ lasers
- channel guiding
- microfabrication
- wakefield instrumentation

New Directions (or Slightly-Used)

- PWFA Test at SLAC
- beam-combining
- neutral beam collisions
- matrixed linacs
Predictions in the next year...

Can Do
- CLIC will machine a DDS structure
- PWFA at SLAC standing by for e-time
- channel-guided LWFA results are in
- NLC in engineering phase

Maybe Can Do
- ultimate G in Cu known to 10%
- field emission $\beta$ understood, held to 20
- 30 MW W-Band tube being engineered
- LWFA systems study in progress
- beam combining, neutralization proposal
- wakefields for 0.5mm bunch agree w/theory
- AA Community participates in SLC’s Last Run
For More Information on ARDB, Contact...

David Whittum,
MS26 SLAC, Stanford University,
2575 Sand Hill Road,
Menlo Park CA 94025
Tel: 415-926-2302
Fax: 415-926-4999
Email:whittum@slac.stanford.edu
URL: http://beam.slac.stanford.edu