Crossing Angles In The Beam-Beam Interaction

R. H. Siemann*
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

ABSTRACT
A Hamiltonian perturbation analysis of the beam-beam interaction with a horizontal crossing angle is performed. The beam-beam tune shifts and resonances that result from a crossing angle are determined.

I. INTRODUCTION

Many storage ring colliders are being designed to reach high luminosity through the use of a large number of closely spaced bunches. This introduces a potential problem of parasitic collisions near the interaction point, but these parasitic collisions can be avoided by having the beams cross at an angle rather than head-on (Figure 1). The contributions to the tune shifts and the beam-beam resonances introduced by a crossing angle are analyzed in this paper.

The beam-beam interaction with a crossing angle has been studied by a number of authors, [1] - [4]. This paper is closest to that of Sagan et al [2] which obtained some of the results presented here. The notation and method are discussed extensively in references [5] and [6].

II. PERTURBATION FORMALISM

The Hamiltonian of a particle in beam 1 is

$$H = H_0 - rac{N_r c}{\gamma} \tilde{V}_{BB}$$

where H_0 is the Hamiltonian of the transverse motion in the absence of the beam-beam interaction, \tilde{V}_{BB} is the beam-beam potential, N is the number of particles in beam 2, r_c is the classical particle radius, and γ is the energy in units of rest energy. The betatron motions in the absence of the beam-beam interaction can be written in terms of the action-angle variables $\{I_x, \psi_x\}$ and $\{I_y, \psi_y\}$ of the unperturbed Hamiltonian, H_0,

$$x_B = \sqrt{2I_x \beta_x} \cos \psi_x; \quad y_B = \sqrt{2I_y \beta_y} \cos \psi_y.$$ (1)

These expressions are used in a perturbation analysis of \tilde{V}_{BB}.

The beam-beam potential is

$$\tilde{V}_{BB} = \frac{2}{\pi \sigma_L^2} \sum_{n=-\infty}^{\infty} V_F(x,y,s) e^{-2(s-(nC+ct))^2/\sigma_L^2}.$$ (1)

The sum is over all turns and the variables in this equation are: σ_L = the RMS bunch length of beam 2; s = coordinate along the reference orbit; C = the collider circumference; c = speed of light; and τ = displacement of the collision point given in terms of the synchrotron oscillation amplitude, $\frac{x}{L}$, and tune, Q_s, by

$$\tau = \frac{x}{2} \cos(2\pi n Q_s).$$

The potential V_F depends at the displacements of the particle from the center of beam 2

$$V_F = \int_0^{\infty} dq \frac{1}{\sqrt{(2\sigma_x^2 + q)(2\sigma_y^2 + q)}} \exp \left\{ -\frac{x^2}{2\sigma_x^2 + q} - \frac{y^2}{2\sigma_y^2 + q} \right\},$$

where σ_x and σ_y are the RMS transverse sizes of beam 2.

Using the expressions in eq. (1) as approximations for the betatron motions and assuming that the crossing is in the x-dimension, the potential can be rewritten

$$V_F = \frac{\sqrt{\pi}}{2\pi \sin 2\theta} \int_0^{\infty} dq \frac{1}{\sqrt{(2\sigma_y^2 + q)}} \exp \left\{ -\frac{2\beta_y I_y \cos^2 \theta_y}{2\sigma_y^2 + q} \right\} \times \left\{ \frac{(s \sin 2\varphi + \sqrt{2\beta_x I_x} \cos \theta_x)^2}{2\sigma_x^2 + q} \right\}.$$ (1)

Fourier transforming the x expression with respect to s gives

$$V_F = \frac{\sqrt{\pi}}{2\pi} \frac{1}{\sin 2\theta} \int_0^{\infty} dq \frac{1}{\sqrt{(2\sigma_y^2 + q)}} \exp \left\{ -\frac{2\beta_y I_y \cos^2 \theta_y}{2\sigma_y^2 + q} \right\} \times \left(\int_0^{\infty} e^{i\omega s} ds \exp \left\{ -\frac{\omega^2 (2\sigma_x^2 + q)}{4\sin^2 2\varphi} + \frac{i\omega \sqrt{2\beta_x I_x} \cos \theta_x}{\sin 2\varphi} \right\} \right).$$

Following the usual procedure of Fourier transforming \tilde{V}_{BB} with respect to ψ_x, ψ_y and s gives an expression for \tilde{V}_{BB} in terms of Fourier coefficients each of which is related to the resonance

$$pQ_x + rQ_y + mQ_s = n.$$
where \(p, r, m, \) and \(n \) are integers. Making a change of variables \(\zeta = \omega / \sin 2\phi \) this expression is

\[
\tilde{V}_{BB} = \frac{1}{C} \sum_{m,n,p,r} \int d\zeta \frac{U_{pr}(I_x, I_y, \zeta)}{p} \exp\left(-\frac{k_{prm} + \zeta \sin 2\phi)^2 \sigma_L^2}{8}\right) \\
\times \exp\left(i m J_m\left(k_{prm} / 2 \right)\right) \exp\left(i(p \psi_x + r \psi_y - 2\pi(n - mQ_x)s / C) \right)
\]

where

\[
U_{pr} = \frac{\sqrt{\pi}}{(2\pi)\sqrt{3}} \int_0^{\infty} \int_0^{\infty} dq \exp\left(-\frac{2\gamma \beta_x \cos^2 \theta_x}{2\sigma_y + q}\right) \\
\times \exp\left(-\frac{\gamma(2\sigma_y + q)}{4}\right) + i\gamma \sqrt{2\beta_x \cos \theta_x}
\]

and

\[
k_{prm} = 2\pi(n - mQ_x) / C + p(1/\beta_x - 2\pi Q_x / C) + r(1/\beta_y - 2\pi Q_y / C).
\]

The quantities \(\beta_x^* \) and \(\beta_y^* \) are the \(\beta \)-functions at the collision point, and \(Q_x, Q_y \) are the tunes in the absence of the beam-beam interaction.

The resonance \(pQ_x + rQ_y + mQ_s = n \) occurs for values of the tune where the phase is stationary, i.e.

\[
\frac{d}{ds}(p \psi_x + r \psi_y - 2\pi(n - mQ_s)s / C) = 0,
\]

and the average value of the beam-beam potential is given by the term in the series with \(p = r = m = n = 0 \). Perform a Taylor expansion in powers of \(\sin 2\phi \)

\[
\tilde{V}_{BB} = \tilde{V}_{BB}^{\sin 2\phi = 0} + \sin 2\phi \frac{\partial \tilde{V}_{BB}}{\partial \sin 2\phi}^{\sin 2\phi = 0} + \ldots.
\]

The first term in the Taylor series is

\[
\tilde{V}_{BB}^{\sin 2\phi = 0} = \frac{1}{C} \sum_{m,n,p,r} \int d\zeta \frac{U_{pr}(I_x, I_y, \zeta)}{p} \exp\left(-\frac{k_{prm} \sigma_L^2}{8}\right) \\
\times \exp\left(i m J_m\left(k_{prm} / 2 \right)\right) \exp\left(i(p \psi_x + r \psi_y - 2\pi(n - mQ_x)s / C) \right).
\]

The integral is

\[
\int d\zeta U_{pr}(I_x, I_y, \zeta) = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} dq e^{i p \psi_x + r \psi_y - 2\pi(n - mQ_x)s / C} \\
\times \exp\left(\frac{2I_x \beta_y \cos^2 \theta_y}{2\sigma_y + q} - \frac{2I_x \beta_x \cos^2 \theta_x}{2\sigma_y + q}\right).
\]

The second term in the Taylor series is

\[
\frac{\partial \tilde{V}_{BB}}{\partial \sin 2\phi}^{\sin 2\phi = 0} = \frac{1}{C} \sum_{m,n,p,r} \int \zeta d\zeta U_{pr}(I_x, I_y, \zeta) \exp\left(-\frac{k_{prm} \sigma_L^2}{8}\right) i m \\
\times \left[\frac{\gamma}{2} J_m\left(m - 1\right) - \frac{m}{k_{prm}^2} J_m\left(m - \frac{k_{prm} \sigma_L}{2}\right) \right] \\
\times \exp\left(i(p \psi_x + r \psi_y - 2\pi(n - mQ_x)s / C) \right).
\]

Equations (2) - (5) contain the results. These frightening-looking expressions can be interpreted to give useful information about the beam-beam interaction.

III. DISCUSSION

A. Tune Shifts

The tune shifts as a function of amplitude are

\[
\Delta Q_x = -\frac{\gamma^c}{2\pi^2} \frac{\partial \tilde{V}_{BB}}{\partial I_x}; \Delta Q_y = -\frac{\gamma^c}{2\pi^2} \frac{\partial \tilde{V}_{BB}}{\partial I_y}
\]

where \(\tilde{V}_{BB} \) is given by eqs. (2) - (5) evaluated with \(p = r = m = n = 0 \).

The tune shifts are the same as for head-on collisions because there are no contributions from the second term in the Taylor series, the term proportional to \(\sin 2\phi \). This follows from the parity of the \(\theta_x \) integrands. In the case of \(\Delta Q_y \) the integral is
The crossing angle has introduced new beam-beam resonances that have odd horizontal order and Fourier expansion coefficients proportional to $\sin 2\phi$. There are both betatron, $m = 0$, and synchrobetatron, $m \neq 0$, resonances. The appearance of odd order betatron resonances can be understood because there is a phase shift of π across the interaction region. The synchrobetatron resonances arise from modulation introduced by the synchrotron oscillations. They depend on the synchrotron amplitude and have zero Fourier expansion coefficient when $\tilde{\tau} = 0$.

C. Remarks

The crossing angle has not changed the tune shifts, so the beam-beam footprint, the area of the tune plane occupied by the beam, is the same as for head-on collisions. The effect of the crossing angle has been to introduce odd horizontal order resonances. These additional resonances could lower the beam-beam limit.

TeV33 is considering using both horizontal and vertical crossing angles. The vertical crossing angle will introduce odd order vertical resonances as well, and there is a still larger probability of a reduced beam-beam limit.

IV. REFERENCES

B. Beam-Beam Resonances

Possible resonances can determined from the parity of the integrands in eqs. (3) and (5). The integrand of eq. (3) is an even function of θ_x and an even function of θ_y. The only allowed resonances for head-on collisions must have both p and r equal to even integers. The integrand of eq. (5) is an odd function of θ_x and an even function of θ_y. The allowed resonances must have r equal to and even integer and p equal to an odd integer.