B Physics and CP Violation

Matthias Neubert – Cornell University
(neubert@mail.lns.cornell.edu)

I. Introduction

II. Charmless Hadronic Decays

III. CP Violation in Mixing

IV. Looking Ahead... Beyond the Standard Model

V. Summary

(SLAC Summer Institute – Topical Conference – 23 August 2000)
Part I: Introduction
The Role of Flavor Physics

* flavor sector contains most of the undetermined parameters of the SM: Yukawa couplings
 → determine quark masses and mixings, lepton and neutrino masses and mixings, CP violation
* not as well tested as the gauge sector of the SM
 • quark mixings correctly described by CKM model?
 • CKM phase only source of CP violation?
 • hierarchical patterns caused by new symmetries?
* CP violation in SM is not sufficient to explain baryon asymmetry in Universe
* need New Physics, but many possibilities:
 • TeV scale physics? GUT scale physics? Physics at an intermediate scale?
 • CP violation in lepton sector?
* complementarity between new particle searches and measurements of flavor parameters
Lessons from Kaons

* observation of CP violation in $K - \bar{K}$ mixing (parameter ϵ_K) in 1964 showed that CP is not a symmetry of Nature, but left open the question whether the pattern of CP violation predicted by the Standard Model is correct (e.g., “superweak” interactions?)

* confirmation of CP violation in $K \rightarrow \pi \pi$ decays (“direct CP violation”, parameter ϵ') in 1999 proved that CP is violated in flavor-changing charged-current interactions, as predicted by the Standard Model:

\[\delta_{\text{CKM}} = \gamma \text{ in CKM matrix} \]

\[\Rightarrow \text{CP violation in mixing and weak decays} \]
\[
\text{Re}\left(\frac{\epsilon'}{\epsilon}\right) \approx 13 \left[(1 - \Omega_{\eta\eta'}) B_6^{(1/2)} - 0.4 B_8^{(3/2)} + \ldots \right] \\
\text{hadronic matrix elements}
\]

\[
\times \frac{\text{Im}(V_{td}V_{ts}^*)}{|V_{ub}| |V_{cb}| \sin \gamma}
\]

* ideally, would determine \(\sin \gamma \)...

... if we only knew how to compute the \textit{hadronic matrix elements}!

* \textbf{but}: order of magnitude is as predicted by the \textit{Standard Model}!
* CKM mechanism relates all CP-violating observables to a single parameter δ_{CKM}

 • very predictive!

 • in particular, expect large CP asymmetries in some B decays

* important: B system is more accessible to a solid theoretical analysis, since $m_b \gg \Lambda_{\text{QCD}}$

 • strong-interaction effects can be dealt with using heavy-quark expansions, i.e., expansions in powers of $\alpha_s(m_b) \ll 1$ and $\Lambda_{\text{QCD}}/m_b \ll 1$

 • systematic, model-independent framework with controlled theoretical uncertainties
The CKM Paradigm

Cabibbo–Kobayashi–Maskawa matrix:

\[
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix}
=
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
\]

3 × 3 unitary matrix connecting mass eigenstates of down-type quarks with interaction eigenstates

→ described by 4 real parameters

Wolfenstein parameterization:

\[
V_{\text{CKM}} =
\begin{pmatrix}
 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\
 -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
 A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + O(\lambda^4)
\]

• accurately known: \(|V_{us}| \) and \(|V_{cb}| \) (\(\lambda \) and \(A \))

• more uncertain: \(|V_{ub}| \) and \(|V_{td}| \) (\(\rho \) and \(\eta \))
* in past 15 years, strong combined efforts of several complementary experiments \((e^+e^- \text{ at } \Upsilon(4S), e^+e^- \text{ at } Z^0, \text{ hadron colliders})\), accompanied by significant progress in theory, has led to tremendous advances in our knowledge of the CKM matrix

Example 1: \(|V_{cb}|(1990) = 0.043 \pm 0.010\), whereas
\(|V_{cb}|(1999) = 0.040 \pm 0.002\) has a precision not much worse than that in the Cabibbo angle

Example 2: \(|V_{ub}|(1990) \equiv 0\) still possible since \(b \rightarrow u\) decays were not yet observed, whereas
\(|V_{ub}|(1999) = (3.4 \pm 0.7) \cdot 10^{-3}\) is known with 20\% accuracy despite its smallness
Example 3: exploring the (ρ, η)-plane

(F. Caravaglions et al., 2000)
Unitarity triangle:

\[V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0 \]

* combining the measurements of \(|V_{ub}| \) in semi-leptonic decays, \(|V_{td}| \) in \(B_{d,s} - \bar{B}_{d,s} \) mixing, and \(\epsilon_K \) in \(K - \bar{K} \) mixing, the parameters of the unitarity triangle are determined already with great accuracy:

(F. Caravagllos et al., 2000)

- \(\bar{\rho} = 0.240^{+0.057}_{-0.047} \) and \(\bar{\eta} = 0.335 \pm 0.042 \)
- \(\sin 2\beta = 0.750^{+0.058}_{-0.064} \), \(\sin 2\alpha = -0.38^{+0.24}_{-0.28} \)

 and \(\gamma = (55.5^{+6.0}_{-8.5})^\circ \)
Key feature:

* in SM, all CP violation results from a single complex phase $\delta_{\text{CKM}} = \gamma = \arg(V_{ub}^*)$ in the CKM matrix

→ beginning to be tested by confronting measurements of ϵ_K (from $K-\bar{K}$ mixing) and $\sin 2\beta$ (from $B \to J/\psi K_S$ decays) with information obtained from measurements of CP-conserving quantities ($|V_{ub}|$, Δm_d, Δm_s)
Where Do We Go from Here?

* precise determination of ρ and η in itself is only one of many goals

* focus has now shifted towards testing the consistency of the entire CKM picture

 \rightarrow 4 parameters, unitarity relations, 1 phase
 (not just checking “whether the triangle closes”)

* in addition, B factories are now in focus for having a realistic chance of finding deviations from the SM

* to this end:

 - need many different, independent measurements of the unitarity triangle using B_d, B_s and K decays, and based on CP-conserving and CP-violating processes

 - need many manifestations of CP violation, in mixing (“indirect”), decay (“direct”), and their interference

 - need to test for New Physics in rare processes (penguins and boxes)
The Tools

* several existing and approved facilities, as well as proposed new experiments, will help us to explore the quark sector with unprecedented precision

B factories:

* Existing e^+e^- colliders at $\Upsilon(4S)$:
 - BaBar (SLAC), Belle (KEK), CLEO-3 (Cornell), HERA-B (DESY)

→ BaBar and Belle plan luminosity upgrades in several stages

→ PEP-II as an example (similar for KEK-B):

<table>
<thead>
<tr>
<th>Year</th>
<th>\mathcal{L} (cm$^{-2}$ s$^{-1}$)</th>
<th>$B\bar{B}$ (yr$^{-1}$)</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000–2002</td>
<td>3×10^{33}</td>
<td>20×10^6</td>
<td>60×10^6</td>
</tr>
<tr>
<td>Phase 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003–2005</td>
<td>1×10^{34}</td>
<td>67×10^6</td>
<td>260×10^6</td>
</tr>
<tr>
<td>Phase 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006–2008</td>
<td>3×10^{34}</td>
<td>200×10^6</td>
<td>860×10^6</td>
</tr>
</tbody>
</table>
→ will have about $2.5 \times 10^8 \, B \bar{B}$ pairs per experiment at end of phase 2, and about $10^9 \, B \bar{B}$ pairs per experiment at end of phase 3

* Existing hadron collider:

 • CDF and D0 (Fermilab) at Tevatron Run-II

* Approved hadron colliders:

 • BTeV (Fermilab), LHC-b (CERN)

→ will produce about $4 \times 10^{11} \, B \bar{B}$ pairs per year at luminosity $\mathcal{L} = 2 \times 10^{32} \, \text{cm}^{-2} \, \text{s}^{-1}$

→ trigger and particle reconstruction are big issues!

* Future possibilities:

 • High-luminosity e^+e^- collider
 $(\mathcal{L} \sim 10^{35-36} \, \text{cm}^{-2} \, \text{s}^{-1})$ at $\Upsilon(4S)$

 • High-luminosity e^+e^- collider
 $(\mathcal{L} \sim 10^{33-34} \, \text{cm}^{-2} \, \text{s}^{-1})$ at Z^0 ("Giga-Z")
Rare kaon experiments:

* measurements of $K \rightarrow \pi \nu \bar{\nu}$ provide direct information on the Wolfenstien parameters ρ and η, and are theoretically very clean:

\[K^+ \rightarrow \pi^+ \nu \bar{\nu} \Rightarrow |V_{td} V_{ts}^*| \sim |1 - \rho - i\eta| \]
\[K^0_L \rightarrow \pi^0 \nu \bar{\nu} \Rightarrow \text{Im}(V_{td} V_{ts}^*) \sim \eta \]

Existing and approved experiments:

- E787 (BNL) has reported 1 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ event, corresponding to a branching ratio of $(1.5^{+3.5}_{-1.3}) \times 10^{-10}$ — about twice the SM prediction

- modestly upgraded experiment E949 (BNL) expects about 10 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events in SM

Proposed experiments:

- CKM (Fermilab) expects about 100 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events in SM

“Contemplated” experiments:

- K0PI0 (BNL) and KAMI (Fermilab) expect about 65 $K^0_L \rightarrow \pi^0 \nu \bar{\nu}$ events in SM
Part II:
Charmless Hadronic B Decays
Reason for Excitement

* recent experimental data on charmless hadronic B decays from CLEO, BaBar and Belle have caused a lot of excitement in the theory community

→ here focus on $B \to \pi K$ and $B \to \pi\pi$ decays, which at present are best understood theoretically

* in general, sensitivity to CP-violating “weak” phases requires sizable interference of decay topologies which differ in their CKM parameters

* in charmless hadronic B decays, there is significant interference of tree and penguin topologies!

<table>
<thead>
<tr>
<th>Tree</th>
<th>Penguin</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{ub} V_{us}^* \sim \lambda^4 e^{-i\gamma}$</td>
<td>$V_{tb} V_{ts}^* \sim \lambda^2$</td>
<td>$</td>
</tr>
<tr>
<td>$V_{ub} V_{ud}^* \sim \lambda^3 e^{-i\gamma}$</td>
<td>$V_{tb} V_{td}^* \sim \lambda^3 e^{i\beta}$</td>
<td>$</td>
</tr>
</tbody>
</table>
* implies potentially large CP asymmetries, e.g.:
\[
A_{CP}(B^\pm \to \pi^0 K^\pm) \approx 2 \left| \frac{T}{P} \right| \sin \gamma \quad \sin \delta_{st}
\]

\approx 0.5

strong phase

* sensitivity to \(\gamma \) also in CP-averaged rates, e.g.:
\[
\frac{\Gamma(B \to \pi^+ K^{\pm})}{\Gamma(B \to \pi^{\pm} K_S)} \approx 1 + 2 \left| \frac{T}{P} \right| \cos \gamma \cos \delta_{st}
\]

* varying \(-1 \leq \cos \delta_{st} \leq 1\) yields bounds on \(\cos \gamma \):

→ Fleischer–Mannel bound, Neubert–Rosner bound

→ see lectures by Helen Quinn at last year’s SSI

* in some cases, one can use symmetries (isospin, Fierz relations, SU(3)) to eliminate hadronic uncertainties

* to do better, need a theory of hadronic \(B \) decays

→ recent progress using the heavy-quark expansion
The Challenge

* theoretical description of hadronic weak decays is difficult due to non-perturbative hadronic dynamics
* this affects interpretation of B factory data, studies of CP violation, and searches for New Physics
* the problem:

\[\begin{align*}
\mathcal{H}_{\text{eff}} &= \frac{G_F}{\sqrt{2}} \sum_i \lambda_i^{\text{CKM}} C_i(\mu) O_i(\mu) \\
\end{align*} \]

* difficulty is to calculate hadronic matrix elements of local operators $O_i(\mu)$
“Naive” factorization:

* consider $\bar{B}^0 \rightarrow D^+ \pi^-$ as an example:

$$A_{\bar{B}^0 \rightarrow D^+ \pi^-} \sim \left(C_1 + \frac{C_2}{N_c} \right) \langle D^+ \pi^- | (\bar{d}u)(\bar{c}b) | \bar{B}^0 \rangle$$

$$+ 2C_2 \langle D^+ \pi^- | (\bar{d}t\bar{u})(\bar{c}t\bar{b}) | \bar{B}^0 \rangle$$

$$\xrightarrow{\text{fact.}} \left(C_1 + \frac{C_2}{N_c} \right) \langle \pi^- | (\bar{d}u) | 0 \rangle \langle D^+ | (\bar{c}b) | \bar{B}^0 \rangle$$

$$\sim f_\pi \sim F_0^{B \rightarrow D}$$

hence:

$$A_{\bar{B}^0 \rightarrow D^+ \pi^-} \sim G_F V_{cb} V_{ud}^* f_\pi F_0^{B \rightarrow D} (m_\pi^2) a_1$$

with

$$a_1 = C_1(\mu) + \frac{C_2(\mu)}{N_c}$$

* similarly, define parameter $a_2 = C_2 + C_1/N_c$, and further parameters a_3, \ldots, a_{10} for more complicated decays

Problem: a_i are renormalization-scale and -scheme dependent in “naive” factorization!
QCD Factorization Formula

\[
\langle M_1 M_2 | O_i | B \rangle = F^B_{j \rightarrow M_1} f_{M_2} T^I_{ij} \otimes \Phi_{M_2} \\
+ T^I_{ij} \otimes \Phi_B \otimes \Phi_{M_1} \otimes \Phi_{M_2} \\
+ \text{power suppressed contributions}
\]

(M. Beneke et al., 1999–2000)

* if \(M_1 \) is heavy, the second term is power suppressed and should be dropped

* factorization does not hold if \(M_2 \) is a heavy-light meson, but it works for an onium state such as \(J/\psi \)

* validity of factorization formula demonstrated by explicit 1-loop (and 2-loop) calculation; general arguments support factorization to all orders in perturbation theory
Implications:

* obtain approach that allows for a systematic, model-independent calculation of corrections to “naive” factorization, which emerges as leading term in heavy-quark limit

* possibility to compute systematically logarithmic corrections to “naive” factorization solves problem of scale and scheme dependences (scale and scheme dependences of hard scattering kernels compensate those of Wilson coefficients)

* non-factorizable corrections are process dependent and hence non-universal, in contrast with basic assumption of “generalized” factorization models

* strong FSI and rescattering phases are calculable and are perturbative or power suppressed (soft rescattering vanishes in the heavy-quark limit)
\(\bar{B}^0 \to D^{(*)+} L^- \) Decays

* useful to define “transition operator”:

\[
\mathcal{T} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{cb} \left[a_1^{D_L} \bar{c} \gamma_\mu b \otimes \bar{d} \gamma^\mu (1 - \gamma_5) u \\
- a_1^{D^*_L} \bar{c} \gamma_\mu \gamma_5 b \otimes \bar{d} \gamma^\mu (1 - \gamma_5) u \right]
\]

* obtain explicit, renormalization-scheme invariant expression for parameters \(a_1 \) at next-to-leading order in \(\alpha_s \) and leading power in \(\Lambda_{QCD}/m_b \):

\[
a_1 = C_1(\mu) + \frac{C_2(\mu)}{N_c} + \frac{C_2(\mu)}{N_c} \frac{C_F \alpha_s}{4 \pi} \left[12 \ln \frac{m_b}{\mu} - B + \Delta_{D^{(*)}} \left(\frac{m_c}{m_b} \right) \right]
\]

with

\[
\Delta_{D^{(*)}}(z) = \int_0^1 dx \Phi_L(x) T_{D^{(*)}}(x, z)
\]

process-dependent, non-universal correction

* however, for these decays \(|a_1^{D^{(*)+}L}| = 1.05 \pm 0.02 \)
Predictions for class-I decay amplitudes:

Model-independent predictions for the branching ratios (in units of 10^{-3}) of $\bar{B}_d \to D(\ast)^+ L^-$ decays in the heavy-quark limit. Theory numbers are $\times (|V_{cb}|/0.04)^2 \times (|a_1|/1.05)^2 \times (\tau_{B_d} / 1.56 \text{ ps})$.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Theory (HQL)</th>
<th>PDG98</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{B}_d \to D^+ \pi^-$</td>
<td>$3.27 \times [F_+(0)/0.6]^2$</td>
<td>3.0 ± 0.4</td>
</tr>
<tr>
<td>$\bar{B}_d \to D^+ K^-$</td>
<td>$0.25 \times [F_+(0)/0.6]^2$</td>
<td>7.9 ± 1.4</td>
</tr>
<tr>
<td>$\bar{B}_d \to D^+ \rho^-$</td>
<td>$7.64 \times [F_+(0)/0.6]^2$</td>
<td></td>
</tr>
<tr>
<td>$\bar{B}_d \to D^+ K^{*-}$</td>
<td>$0.39 \times [F_+(0)/0.6]^2$</td>
<td>6.0 ± 3.3</td>
</tr>
<tr>
<td>$\bar{B}_d \to D^+ a_1^-$</td>
<td>$7.76 \times [F_+(0)/0.6]^2$</td>
<td></td>
</tr>
<tr>
<td>$\bar{B}_d \to D^{*+} \pi^-$</td>
<td>$3.05 \times [A_0(0)/0.6]^2$</td>
<td>2.8 ± 0.2</td>
</tr>
<tr>
<td>$\bar{B}_d \to D^{*+} K^-$</td>
<td>$0.22 \times [A_0(0)/0.6]^2$</td>
<td>6.7 ± 3.3</td>
</tr>
<tr>
<td>$\bar{B}_d \to D^{*+} \rho^-$</td>
<td>$7.59 \times [A_0(0)/0.6]^2$</td>
<td></td>
</tr>
<tr>
<td>$\bar{B}_d \to D^{+} K^{-}$</td>
<td>$0.40 \times [A_0(0)/0.6]^2$</td>
<td></td>
</tr>
<tr>
<td>$\bar{B}_d \to D^{*+} a_1^-$</td>
<td>$8.53 \times [A_0(0)/0.6]^2$</td>
<td>13.0 ± 2.7</td>
</tr>
</tbody>
</table>

* good agreement may be taken as indication that in these decays there are no unexpectedly large power corrections

\rightarrow confirmed by explicit estimates!
Extraction of \(\cos \gamma \) in \(B \to \pi K, \pi\pi \)

* applying the QCD factorization formula to the present case gives

\[
\langle \pi K | H_{\text{eff}} | B \rangle = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb}^* V_{ps} \langle \pi K | T_p | B \rangle
\]

with the “transition “operator”:

\[
T_p = a_1^{\pi K} \delta_{pu} (\bar{b}u)_{V-A} \otimes (\bar{u}s)_{V-A} \\
+ a_2^{\pi K} \delta_{pu} (\bar{b}s)_{V-A} \otimes (\bar{u}u)_{V-A} \\
+ a_3^{\pi K} \sum_q (\bar{b}s)_{V-A} \otimes (\bar{q}q)_{V-A} \\
+ a_4^{\pi K} \sum_q (\bar{b}q)_{V-A} \otimes (\bar{q}s)_{V-A} \\
+ a_5^{\pi K} \sum_q (\bar{b}s)_{V-A} \otimes (\bar{q}q)_{V+A} \\
+ a_6^{\pi K} (\mu) \sum_q (-2)(\bar{b}q)_{S-P} \otimes (\bar{q}s)_{S+P} \\
+ a_7^{\pi K} \sum_q (\bar{b}s)_{V-A} \otimes \frac{3}{2} e_q (\bar{q}q)_{V+A} \\
+ a_8^{\pi K} (\mu) \sum_q (-2)(\bar{b}q)_{S-P} \otimes \frac{3}{2} e_q (\bar{q}s)_{S+P} \\
+ a_9^{\pi K} \sum_q (\bar{b}s)_{V-A} \otimes \frac{3}{2} e_q (\bar{q}q)_{V-A} \\
+ a_{10}^{\pi K} \sum_q (\bar{b}q)_{V-A} \otimes \frac{3}{2} e_q (\bar{q}s)_{V-A}
\]
* contributions of \((S - P) \otimes (S + P)\) penguin operators are multiplied by a factor:

\[
\frac{2\mu_K}{m_b} = \frac{2m_K^2}{(m_s + m_d)m_b} \sim \frac{\Lambda_{QCD}}{m_b} \quad [\approx 0.8]
\]

→ include all such “chirally enhanced” power corrections, since they are numerically important

* terms proportional to the same factor also appear at twist-3 order in the collinear expansion

* these terms involve the logarithmically IR-divergent integral:

\[
X = \int_0^1 \frac{du}{1-u}
\]

indicating the dominance of soft gluon exchange (violation of factorization at next-to-leading power)

* set \(X = \ln(m_B/\Lambda) + r\) with \(r\) a complex random number such that \(|r| < 3\) (“realistic” \(\rightarrow\) blue dots) or \(|r| < 6\) (“conservative” \(\rightarrow\) green dots)

* vary all theory parameters over conservative ranges: renormalization scale, quark masses, wave function parameters, \(X\) parameters, etc.
* focus on ratios of decay rates, which are independent of semi-leptonic form factors:

(M. Beneke et al., hep-ph/0007256)

* with more data, comparison with these predictions will provide a crucial test of the approach
* this will determine γ up to a sign ambiguity

* at present, experimental errors are too large to obtain a meaningful determination:

* in future, this will be a powerful analysis

* sign of γ can be determined by comparing direct CP asymmetries with theoretical predictions

\rightarrow ultimately, will obtain γ without any discrete ambiguities!
Some modes to keep an eye on:

* branching ratios with $\gamma = (60 \pm 20) \degree$ and $|V_{ub}/V_{cb}| = 0.085$:

\[
\text{Br}(B \rightarrow \pi^+\pi^-) = (9 \pm 2) \cdot 10^{-6} \times (F_{B \rightarrow \pi}^+/0.3)^2
\]

\[
\text{Br}(B \rightarrow \pi^0K^0) = (4.5 \pm 2.5) \cdot 10^{-6} \times (F_{B \rightarrow \pi}^+/0.3)^2
\]

* first result is larger than CLEO (4.3 ± 1.6), but in good agreement with BaBar (9.3 ± 2.8) and Belle (6.3 ± 4.0)

* second result is smaller than CLEO (14.6 ± 6.2) and Belle (21.0 ± 8.9)
Direct CP Asymmetries

* generic theoretical prediction:
 strong phases are suppressed (subleading in the heavy-quark expansion), except for very rare decays such as $B \rightarrow \pi^0 \pi^0$

* implies that direct CP asymmetries will be much below the present CLEO bounds:

* observing these asymmetries is an important long-term goal!
Part III:
Mixing-Induced CP Violation
Strong Phases from Quantum Mechanics

* in B decays into a CP eigenstate f_{CP}, observable CP asymmetries can arise from interference of weak phases in the amplitudes for $B - \bar{B}$ mixing and decay:

$$
B^0 \rightarrow f_{CP} \quad \text{mixing} \sim e^{-2i\beta} \quad \bar{B}^0 \rightarrow f_{CP}
$$

* resulting time-dependent CP asymmetry:

$$
A_{CP}(t) = \frac{\Gamma(B^0 \rightarrow f_{CP}) - \Gamma(\bar{B}^0 \rightarrow f_{CP})}{\Gamma(B^0 \rightarrow f_{CP}) + \Gamma(\bar{B}^0 \rightarrow f_{CP})} \approx -\frac{2 \text{Im}\lambda}{1 + |\lambda|^2} \sin(\Delta m_B t) + \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \cos(\Delta m_B t)
$$

where:

$$
\lambda = e^{-2i\beta} \frac{\bar{A}}{A} = \eta_{f_{CP}} e^{-2i\beta} \sum_i \frac{A_i e^{i\delta_i} e^{-i\phi_i}}{\sum_i A_i e^{i\delta_i} e^{i\phi_i}}
$$
* if the decay amplitude is dominated by a single weak phase ϕ_A, then $|\lambda| \simeq 1$ and

$$\text{Im}(\lambda) \simeq -\eta_{f_{\text{CP}}} \sin 2(\beta + \phi_A)$$

Example 1:

$\sin 2\beta$ from $B \to J/\psi K_S$ decays

$(b \to c\bar{c}s$ transitions, $\eta_{J/\psi K_S} = -1)$

<table>
<thead>
<tr>
<th>Tree</th>
<th>Penguin</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{cb}V_{cs}^* \sim \lambda^2$</td>
<td>$V_{tb}V_{ts}^* \sim \lambda^2, \lambda^4 e^{-i\gamma}$</td>
</tr>
</tbody>
</table>

hence: $\phi_A \simeq 0 \Rightarrow \text{Im}(\lambda) \simeq \sin 2\beta$

* above discussion relies on Standard Model

* it could be upset if there existed a New Physics contribution to $b \to c\bar{c}s$ transitions with $\phi_{\text{NP}} \neq 0$
* but such a contribution would also yield

\[A_{CP}(B^\pm \rightarrow J/\psi K^\pm) \sim \sin \delta_{st} \sin \phi_{NP} \neq 0 \]

* unless strong phase \(\delta_{st} \) vanishes accidentally, there is not much room given the CLEO result:

\[A_{CP}(B^\pm \rightarrow J/\psi K^\pm) = (1.8 \pm 4.3 \pm 0.4)\% \]

Example 2:

\(\sin 2\alpha \) from \(B \rightarrow \pi^+ \pi^- \) decays

\((b \rightarrow u\bar{u}d \ transitions, \ \eta_{\pi^+\pi^-} = 1) \)

\[
\begin{array}{ccc}
 b & \rightarrow & u \\
 \downarrow W & & \downarrow W \\
 u & \rightarrow & u, d \\
 \downarrow & & \downarrow \\
 W & \rightarrow & d \\
 \downarrow & & \downarrow \\
 & \rightarrow & u, d
\end{array}
\]

<table>
<thead>
<tr>
<th>Tree</th>
<th>Penguin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ub}V_{ud}^* \sim \lambda^3 e^{-i\gamma})</td>
<td>(V_{tb}V_{td}^* \sim \lambda^3 e^{i\beta})</td>
</tr>
</tbody>
</table>

hence: \(\phi_A \simeq \gamma + \text{“penguin pollution”} \)

\(\Rightarrow \text{Im}(\lambda) \simeq \sin 2\alpha \times [1 + O(P/T)] \)

* conventional way to circumvent this problem is to perform an isospin analysis, using measurements of \(B \rightarrow \pi^+\pi^-, \pi^+\pi^0, \pi^0\pi^0 \) and their CP conjugates (nearly impractical)
Extraction of \(\sin 2\alpha \) in \(B \to \pi^+\pi^- \)

* QCD factorization approach can be used to calculate the “penguin pollution” in \(B \to \pi^+\pi^- \), thereby allowing a determination of \(\alpha \) without isospin analysis

* time-dependent, mixing-induced CP asymmetry in \(B_d \to \pi^+\pi^- \) decays:

\[
A_{\text{CP}}(t) = \frac{\Gamma(B^0(t) \to \pi^+\pi^-) - \Gamma(\bar{B}^0(t) \to \pi^+\pi^-)}{\Gamma(B^0(t) \to \pi^+\pi^-) + \Gamma(\bar{B}^0(t) \to \pi^+\pi^-)}
\]

\[
= - S \cdot \sin(\Delta m_B t) + C \cdot \cos(\Delta m_B t)
\]

* without “penguin pollution”:

\[
S = \sin 2\alpha \ , \quad C' = 0
\]

free of hadronic uncertainties

* interference of tree and (subdominant) penguin topologies introduces hadronic uncertainties, which can be controlled by applying the QCD factorization theorem to the \(B \to \pi\pi \) decay amplitudes
we can calculate this effect with small theoretical uncertainty: (M. Beneke et al., hep-ph/0007256)

\[\sin(2\beta) = 0.75 \]

consistency check is provided by the calculation of the direct CP asymmetry (= C):

\[A_{CP} \]
Part IV:
Looking Ahead... Beyond the Standard Model
Many Determinations of the UT

* generalize discussion presented by Peskin at LP99, indicating precision that could be achieved 10 years from now:

* pursue different strategies, the most important ones being as follows...
(a) **Non-CP triangle:**

determine the triangle by measuring the length of the two sides in semi-leptonic B decays ($|V_{ub}|$ from exclusive and inclusive $B \to X_u \ell \nu$ decays) and $B_{d,s} - \bar{B}_{d,s}$ mixing ($|V_{td}|$ from Δm_d and Δm_s)

\to no CP violation involved

\to main sensitivity to New Physics via magnitude of $B - \bar{B}$ mixing amplitude
(b) B triangle:

determine the angles β, $2\beta + \gamma$, and $\beta + \gamma$ by measuring time-dependent CP violation in $B \rightarrow J/\psi K_S$, $B \rightarrow D(\ast)^{\pm} \pi^{\mp}$, and $B \rightarrow \pi \rho$

\rightarrow CP violation in interference of mixing and decay

\rightarrow main sensitivity to New Physics via mixing

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Tree</th>
<th>Mix + Tree</th>
<th>e^+e^-</th>
<th>hadron</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \rightarrow J/\psi K_S$ $(b \rightarrow c\bar{c}s, \bar{b} \rightarrow \bar{c}c\bar{s})$</td>
<td>1</td>
<td>$e^{2i\beta}$</td>
<td>P1,P2</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B \rightarrow D(\ast)^{\pm} \pi^{\mp}$ $(b \rightarrow c\bar{u}d, \bar{b} \rightarrow \bar{u}c\bar{d})$</td>
<td>1</td>
<td>$\lambda^2 e^{i(2\beta + \gamma)}$</td>
<td>P2,P3</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B \rightarrow \pi \rho$ $(b \rightarrow u\bar{u}d, \bar{b} \rightarrow \bar{u}u\bar{d})$</td>
<td></td>
<td>$e^{-i\gamma}$ $e^{i(2\beta + \gamma)}$</td>
<td>P2,P3</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>
(b’) \(B \) triangle:

determine the angle \(\gamma \) using isospin analysis in
\(B^\pm \rightarrow DK^\pm \) decays

\(\rightarrow \) only tree amplitudes involved

\(\rightarrow \) lowest sensitivity to New Physics of all weak phase determinations!

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Tree</th>
<th>Tree</th>
<th>(e^\pm e^-)</th>
<th>hadron</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^\pm \rightarrow DK^\pm) ((b \rightarrow c\bar{u}s, \ b \rightarrow u\bar{c}s))</td>
<td>1</td>
<td>(e^{i\gamma})</td>
<td>P2?, P3</td>
<td>?</td>
</tr>
</tbody>
</table>
(c) B_s triangle:

determine the angle $\gamma - 2\chi$ and the B_s mixing phase $-\chi$ (SM predicts $\chi = O(\lambda^2 \eta)$ of order 1%) by measuring CP asymmetries in B_s decays, such as $B_s \to D_s^\pm K^\mp$, and $B_s \to J/\psi \phi$ or $B_s \to J/\psi \eta^{(i)}$

→ CP violation in interference of mixing and decay

→ main sensitivity to New Physics via mixing

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Tree</th>
<th>Mix + Tree</th>
<th>e^+e^-</th>
<th>hadron</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \to J/\psi \phi$ or $\eta^{(i)}$ ($b \to c\bar{c}s$, $\bar{b} \to \bar{c}cs$)</td>
<td>1</td>
<td>$e^{-2i\chi}$</td>
<td>-</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B_s \to D_s^\pm K^\mp$ ($b \to c\bar{u}s$, $\bar{b} \to \bar{u}cs$)</td>
<td>1</td>
<td>$e^{i(-2\chi + \gamma)}$</td>
<td>-</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>
(d) K triangle:

determine the coordinates (ρ, η) from measurements of rare K decays ($K^+ \to \pi^+ \nu \bar{\nu}$ and $K^0_L \to \pi^0 \nu \bar{\nu}$) and $K-\bar{K}$ mixing (ϵ_K)

\rightarrow CP violation in mixing and decay

\rightarrow sensitivity to New Physics in mixing and decay

* performing these measurements is of comparable importance as the B_s physics program at hadron B factories!
Strategy for Exploring New Flavor Physics

Q: What if $\sin 2\beta_{\psi K}$ is low?

Q: More generally, what if there is New Physics affecting the particle–antiparticle mixing amplitudes of B_d, B_s and K mesons?

* then none of the triangle constructions discussed above should really close!

* need a reference triangle constructed independently of any information from mixing

 • B system: extract $|V_{ub}|$ from semi-leptonic B decays, and $\gamma = \arg(V_{ub}^*)$ using a variety of methods (e.g., charmless hadronic decays, $B \rightarrow DK$ decays, B_s decays)

 • K system: extract $|V_{td}|$ and $\text{Im}(V_{td})$ from $K \rightarrow \pi \nu \bar{\nu}$ decays
Reference triangle in the near and long-term future:

(a) B-decay triangle with two-fold ambiguity, assuming uncertainties of 20\% in $|V_{ub}/V_{cb}|$ and $\pm 25^\circ$ in γ (near-term).

(b) B-decay triangle (pink) with no ambiguity, assuming uncertainties of 10\% in $|V_{ub}/V_{cb}|$ and $\pm 10^\circ$ in γ, and K-decay triangle (gold) with four-fold ambiguity, assuming 15\% uncertainties in R_t and $|\eta|$ (long-term).
* once the reference triangle is known, one can explore separately potential New Physics contributions to mixing in the B_d, B_s and K systems

* knowledge of γ is the key ingredient that makes this strategy feasible and powerful!

New Physics in $K-\bar{K}$ mixing:

![Diagram showing the dependence of $|\epsilon_K|$ on γ](image)

New Physics contribution to $|\epsilon_K|$ in units of 10^{-3}, assuming present day uncertainties (region bounded by blue curves, using $B_K = 0.86 \pm 0.10$ and $|V_{ub}/V_{cb}| = 0.085 \pm 0.018$) and future smaller errors (region bounded by green curves, using $B_K = 0.86 \pm 0.05$ and $|V_{ub}/V_{cb}| = 0.085 \pm 0.009$).
New Physics in B_d–\bar{B}_d mixing:

![Diagrams](image)

Determination of the B_d–\bar{B}_d mixing amplitude M_{12} with present day (left) and future (right) uncertainties on the input parameters.

(a) **Standard Model contribution** M_{12}^{SM} (region bounded by dashed circles) with marks indicating fixed values of γ. The experimentally determined regions for M_{12} are shown for $\sin 2\phi_d = 0.26 \pm 0.29$.

(b) **New Physics contribution** M_{12}^{NP} corresponding to the four different solutions for γ and $2\phi_d$.
New Physics in Penguins

* above strategies are sensitive to New Physics mainly via the $B_d - \bar{B}_d$ and $B_s - \bar{B}_s$ mixing amplitudes (box diagrams)

* there is, in addition, a large class of loop-dominated processes sensitive to New Physics in the decay amplitude (penguins)

* consider some examples of how to explore this type of New Physics...
1. determine β from interference of mixing and decay in the penguin-mediated mode $B \to \phi K_S$, and compare with β from $B \to J/\psi K_S$

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Peng.</th>
<th>Mix + Peng.</th>
<th>$e^\pm e^-$</th>
<th>hadron</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \to \phi K$</td>
<td>1</td>
<td>$e^{2i\beta}$</td>
<td>P2, P3</td>
<td>✓</td>
</tr>
<tr>
<td>($b \to s\bar{s}s, \bar{b} \to \bar{s}s\bar{s}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. certain observables are particularly sensitive to New Physics contributions to chromo-magnetic or chromo-electric dipole operators

→ direct CP asymmetry in inclusive radiative decays $B^\pm \to X_s \gamma$ is a clean probe of such effects, with basically no SM background

3. certain observables are particularly sensitive to isospin-violating New Physics contributions in \(b \to s(d) + \bar{q}q \) transitions (with \(q = u \) or \(d \))

→ potentially large effect on \(\gamma \) determined from \(B \to \pi K \) decays, which would show up if \(\gamma_{\pi K} \) is compared with \(\gamma_{\text{tree}} = \gamma_{DK} \) or \(\gamma_{\pi \rho} \):

(Y. Grossman et al., 1999)

| New Physics Model | \(| \gamma_{\pi K} - \gamma_{\text{tree}} | \) | \(| \gamma_{\pi K} - \gamma_{\text{tree}} | \) |
|--|---------------------------------|---------------------------------|
| | isospin-cons. | isospin-viol. |
| FCNC \(Z \) exchange | 3° | 180° |
| Extra \(Z' \) boson | 180° | 180° |
| SUSY without R-parity | 180° | 180° |
| SUSY with R-parity:
 max. \(\tilde{s}_R - \tilde{b}_R \) mixing | 7° | 25° |
 max. \(\tilde{s}_L - \tilde{b}_L \) mixing | 7° | 180° |
| 2-Higgs-doublet model
 \((m_{H^+} > 100 \text{ GeV}, \tan\beta > 1)\)
 anom. gauge-boson couplings | 0° | 10° |

| | 0° | 20° |
Instead of a Summary...
Four Reasons Why B Physics is Cooler than String Theory

1. \textit{B} theorists look forward to confronting experiment.
 String theorists look forward to \textit{not} confronting experiment.

2. \textit{B} theorists make effective theories:
 heavy-quark effective theory, large-energy effective theory, non-relativistic effective theory...
 String theorists make:
 \textit{A} theory (of the Universe) ... \textit{K} theory ... \textit{M} theory ...
 1-branes ... 5-branes ... \textit{d}-branes ... \textit{p}-branes ...

3. String theorists dream of a \textit{Theory of Everything}.
 \textit{B} theorists have a \textit{Theory of Something}.

4. We know what we are talking about...