Electroweak Results
from the
Tevatron

presented by:

Jonathan Kotcher
Brookhaven National Laboratory

representing the
CDF and DØ Collaborations

XXVI SLAC Summer Institute Topical Conference
August 3-14, 1998
Outline

- W and Z production
 - $\sigma \cdot B(W, Z \rightarrow e, \mu)$
 - Γ_W - indirect, direct
 - $\sigma \cdot B(W \rightarrow \tau \nu)$

- Rare W decays
 - $W \rightarrow \pi \gamma$
 - $W \rightarrow D, \gamma$

- Drell-Yan production: quark/lepton substructure

- Latest results for M_W

- Trilinear Gauge Boson Couplings
 - $W \gamma, WW/Z, Z\gamma$
 - Combined limits

- Conclusions
Run I Detectors

DØ: Hermetic, high-resolution Ur/LAr calorimetry ($|\eta| < 4.0$)

CDF: Extensive magnetic inner tracking volume (1.4 T)
W Bosons Detected

Number of W bosons detected

Years of Collider Runs (SPS, Tevatron and LEP II)

<table>
<thead>
<tr>
<th>Tevatron Run</th>
<th>Year</th>
<th>$\int \mathcal{L} dt$ (pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"0"</td>
<td>1988-89</td>
<td>4 (CDF only)</td>
</tr>
<tr>
<td>1A</td>
<td>1992-93</td>
<td>20</td>
</tr>
<tr>
<td>1B</td>
<td>1994-95</td>
<td>90</td>
</tr>
<tr>
<td>1C</td>
<td>1995-96</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~ 130 total</td>
</tr>
<tr>
<td>2</td>
<td>begins April, 2000</td>
<td>> 2 fb$^{-1}$ (×20)</td>
</tr>
</tbody>
</table>
Typical Candidate Samples

- Mass of Z measured directly from invariant mass:
 \[M_Z = \sqrt{2E_{t_1}E_{t_2}(1 - \cos \theta_{t_1,t_2})} \]

- Mass of W extracted from M_T^W:
 \[M_T^W = \sqrt{2E_T^lE_T^{\nu}(1 - \cos \Delta \phi^{l\nu})} \]

- Background contamination:
 $\leq 15\%$ for W, $\leq 5\%$ for Z
 (QCD, cosmic rays, etc.)

Run 1b $W \rightarrow ev$ Sample

- 59579 candidates
- Lum = 76 pb$^{-1}$

Run 1b $Z \rightarrow ee$ Sample

- 5705 candidates
- Lum = 89 pb$^{-1}$
W and Z Production

\[p\bar{p} \rightarrow W + X \quad p\bar{p} \rightarrow Z + X \]

\[l\nu \quad ll \]

- At \(\sqrt{s} = 1.8 \) TeV:
 - \textit{valence-sea contribution} \(\approx 55\% \)
 - \textit{sea-sea} \(\approx 20\% \)

- \(W/Z \) identified via leptonic decays: \(l = e, \mu, (\tau) \)
 - \textit{Isolated, high-}\(p_T \) (>20-25 GeV/c) charged lepton(s)
 - \textit{Neutrino in W decays “detected” via} \(\not{E}_T \) :

\[\not{E}_T \equiv -(\text{observed } E_T) = E^\nu_T \text{ (>20-25 GeV)} \]
\[\sigma \cdot B = \frac{N_C - N_B}{\mathcal{L}} \cdot \frac{1}{\mathcal{A}\varepsilon} \]

- \(N_C \) = number of candidates
- \(N_B \) = estimated background
- \(\mathcal{L} \) = integrated luminosity
- \(\mathcal{A} \) = acceptance
- \(\varepsilon \) = efficiencies

- Measurements available from:
 - **DØ**: \(e, \mu \) channels
 (Run 1A and Run 1B data samples)
 - **CDF**: \(e \) channel
 (Run 1A (W), Run 1A+1B (Z) data samples)

- **Theoretical prediction at \(\mathcal{O}(\alpha_s^2) \) (CTEQ2M)**

<table>
<thead>
<tr>
<th></th>
<th>DØ (e)</th>
<th>CDF (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int \mathcal{L}dt) (pb(^{-1}))</td>
<td>75.9 \pm 6.4</td>
<td>19.7 \pm 0.7</td>
</tr>
<tr>
<td>(W) candidates</td>
<td>59,579</td>
<td>13,796</td>
</tr>
<tr>
<td>(\mathcal{A}_W) (%)</td>
<td>43.4 \pm 1.5</td>
<td>34.2 \pm 0.8</td>
</tr>
<tr>
<td>(\varepsilon_W) (%)</td>
<td>70.0 \pm 1.2</td>
<td>72.0 \pm 1.3</td>
</tr>
<tr>
<td>Bkg (W) (%)</td>
<td>8.1 \pm 0.9</td>
<td>12.3 \pm 1.2</td>
</tr>
</tbody>
</table>
W & Z Cross Sections (cont.)

![Graph showing $\sigma \cdot B$ values for e, μ, and e events for DØ and CDF experiments.]

- Dominant uncertainties:
 - Theory: pdf's (3-5%)
 - Data: luminosity

<table>
<thead>
<tr>
<th></th>
<th>$\sigma \cdot B(W \rightarrow l\nu)$ (nb)</th>
<th>$\sigma \cdot B(Z \rightarrow ll)$ (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DØ(e) (Run 1B)</td>
<td>2.38 ± 0.01 ± 0.09 ± 0.20</td>
<td>±0.003 ± 0.005 ± 0.020</td>
</tr>
<tr>
<td>DØ(μ) (Run 1B)</td>
<td>2.38 ± 0.03 ± 0.17 ± 0.13</td>
<td>±0.011 ± 0.020 ± 0.009</td>
</tr>
<tr>
<td>CDF(e)</td>
<td>2.49 ± 0.02 ± 0.08 ± 0.09</td>
<td>±0.004 ± 0.004 ± 0.018</td>
</tr>
<tr>
<td>(Run 1A)</td>
<td></td>
<td>(Run 1A+1B)</td>
</tr>
<tr>
<td>Standard Model</td>
<td>2.42 ± 0.12</td>
<td>0.226 ± 0.010</td>
</tr>
</tbody>
</table>
Extracting Γ_W

$$R_\ell = \frac{\sigma \cdot B(W \to \ell\nu)}{\sigma \cdot B(Z \to \ell\ell)} = \frac{\sigma_W}{\sigma_Z} \frac{\Gamma(Z)}{\Gamma(Z \to \ell\ell)} \times \frac{\Gamma(W \to \ell\nu)}{\Gamma(W)}$$

$$\downarrow$$

$$B^{-1}(Z \to \ell\ell)$$

- Measure R_ℓ directly (expt'nl errors tend to cancel)
- Obtain remaining quantities on RHS to extract Γ_W:

 - $\frac{\sigma_W}{\sigma_Z} = 3.33 \pm 0.03$ (theory)

 - $B(Z \to \ell\ell) = (3.367 \pm 0.006)\%$ (LEP/SLC)

 - $\Gamma(W \to \ell\nu) = \frac{G_F M_W^2}{\sqrt{2} \pi} (1 + \delta) = 225.2 \pm 1.5$ MeV

 Rosner et al., PRD49, 1363 (1994)

<table>
<thead>
<tr>
<th>DØ $(e+\mu)$</th>
<th>Run 1B Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_ℓ</td>
<td>10.48 ± 0.43</td>
</tr>
<tr>
<td>$B(W \to \ell\nu)%$</td>
<td>10.59 ± 0.44</td>
</tr>
<tr>
<td>Γ_W (GeV)</td>
<td>2.126 ± 0.092</td>
</tr>
<tr>
<td>Standard Model (GeV)</td>
<td>2.077 ± 0.014</td>
</tr>
</tbody>
</table>

* Expect $\sim \times 2$ reduction in error for final result
Direct Measurement of Γ_W (CDF)

- High tail region of M_T distribution sensitive to Γ_W
 - Breit-Wigner shape > calorimeter resolutions
 - Measurement independent of theoretical input

CDF Preliminary

Transverse mass lineshape (normalized to unit area) for $\Gamma_w = 1.5, 1.7, ..., 2.5$ GeV

- Log-likelihood fit to Monte Carlo-generated templates with varying Γ_W
- Fit window: $110 < M_T < 200$ GeV (210 events - Run 1B)
- e channel only
Direct Measurement of Γ_W (cont’d)

CDF Preliminary

$\Gamma_W = 2.19 \pm 0.17 \pm 0.09$ GeV

$(\Gamma_W^{SM} = 2.077 \pm 0.014$ GeV$)$

- Systematic errors dominated by:
 - W recoil modeling – 55 MeV
 - electron energy scale – 55 MeV
 - backgrounds – 40 MeV
Summary of Γ_W

\[\Gamma_W = 2.062 \pm 0.059 \quad \text{World Average} \]
\[\Gamma_W = 2.077 \pm 0.014 \quad \text{SM Prediction} \]

\[\Delta \Gamma_W^{\text{non-SM}} < 109 \text{ MeV (95\% CL)} \]

Upper limit on unexpected contributions to Γ_W
(supersymmetric charginos or neutralinos, heavy quarks)
Lepton Universality

\[
\left(\frac{g_\tau^W}{g_e^W} \right)^2 = \frac{\sigma \cdot B(W \rightarrow \tau \nu)}{\sigma \cdot B(W \rightarrow e\nu)}
\]

- Select hadronic decays of \(\tau \):
 - Isolated, narrow, high-\(E_T \) jet (> 15-25 GeV)
 - Few associated charged tracks (1, 3 prong decays)
 - Large \(E_T \) (> 20-25 GeV)
 - No jet opposite in azimuth (QCD background)

- Recent preliminary DØ result:
 - 17 pb\(^{-1}\), 1202 candidates, 222 ± 16 background:
 \[
 \sigma \cdot B(W \rightarrow \tau \nu) = 2.38 \pm 0.09 \pm 0.10 \text{ nb}
 \Rightarrow \frac{g_\tau^W}{g_e^W} = 1.004 \pm 0.019 \pm 0.026
 \]

![Graph showing values of \(\frac{g_\tau^W}{g_e^W} \) for different experiments and the world average](image)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UA1</td>
<td>1.01 ± 0.117</td>
</tr>
<tr>
<td>UA2</td>
<td>1.02 ± 0.057</td>
</tr>
<tr>
<td>CDF</td>
<td>0.97 ± 0.07</td>
</tr>
<tr>
<td>DØ</td>
<td>1.004 ± 0.032</td>
</tr>
<tr>
<td>World Average</td>
<td>1.003 ± 0.025</td>
</tr>
</tbody>
</table>
Rare W Decays

$W^\pm \rightarrow \pi^\pm \gamma$

- Theory: $\Gamma(W \rightarrow \pi\gamma)/\Gamma(W \rightarrow e\nu) \sim 3 \times 10^{-8}$

- Previous experimental limits:

 * UA2: $\leq 5 \times 10^{-3}$ (1992)
 * CDF: $\leq 2 \times 10^{-3}$ (Run 1A)

 - One isolated high-p_T photon (>23 GeV/c)
 - Jet with isolated high-p_T charged track (>15 GeV/c)
 - CDF Run 1B: $\varepsilon \times A \sim 4\%$, $\int \mathcal{L} dt = 83$ pb$^{-1}$

\[8\]
\[7\]
\[6\]
\[5\]
\[4\]
\[3\]
\[2\]
\[1\]

- 3 events in $\pi\gamma$ mass spectrum within $M_W \pm 3\sigma$

- Est. background: (5.2 ± 1.5) events (QCD direct photons)

\[\Rightarrow \sigma_W \cdot B(W \rightarrow \pi\gamma) \leq 1.7$ pb (95\% CL)

\[\Gamma(W \rightarrow \pi\gamma)/\Gamma(W \rightarrow e\nu) \leq 7 \times 10^{-4}\]
Rare W Decays (cont'd)

$W^\pm \rightarrow D_s^\pm \gamma$

- Theory: $\Gamma(W \rightarrow D_s \gamma)/\Gamma(W \rightarrow e\nu) \sim 1 \times 10^{-6}$
- First experimental limit on this branching fraction
 - One isolated high-p_T photon (>22 GeV/c)
 - One isolated high-p_T D_s candidate (>22 GeV/c):
 - $D_s^\pm \rightarrow \phi \pi^\pm$, $\phi \rightarrow K^+ K^-$
 - $D_s^\pm \rightarrow K^{*0} K^\pm$, $K^{*0} \rightarrow K^{\pm} \pi^\mp$
 - CDF Run 1B: $\epsilon \times \mathcal{A} \sim 7\%$, $\int \mathcal{L} dt = 82$ pb$^{-1}$

- 4 candidates in $D_s^\pm \gamma$ mass spectrum within $M_W \pm 3\sigma$
- Estimated background of 4 events (QCD direct photons)
 \[\Rightarrow \sigma_W \cdot B(W \rightarrow D_s \gamma) \leq 27.4 \text{ pb (95\% CL)} \]
 \[\Gamma(W \rightarrow D_s \gamma)/\Gamma(W \rightarrow e\nu) \leq 1.1 \times 10^{-2} \]

With 10 fb$^{-1}$, expect $\leq 10^{-6}$ for these types of processes. Long shot, but Run 2 may reveal something new here...
Drell-Yan Probe of Substructure

\[q\bar{q} \rightarrow (\gamma, Z) \rightarrow l^+l^- \]

- Broad range of partonic cms energies available in \(\bar{p}p \) collisions
 - Low mass \(\Rightarrow \) low \(x \) probe (\(x \approx 0.006 \))
 - High mass \(\Rightarrow \) high \(x \), partonic substructure

- Contact interaction:

 Erichsen et al., PRL 50, 911 (1983)

 \[
 \mathcal{L} = \mathcal{L}_{SM} + \eta_{ij} \frac{g^2}{\Lambda_{ij}^2} (\bar{\psi}_i \gamma^\mu \psi_i) (\bar{\psi}_j \gamma_\mu \psi_j)
 \]

 - \(\Lambda_{ij} \) = compositeness scale
 - \(\eta_{ij} = +(-)1 \) destructive (constructive) interference
 - \(i, j = L, R \) chirality

- Gives rise to predicted Drell-Yan cross section of form:

 \[
 \frac{d\sigma}{dm} = \left(\frac{d\sigma}{dm} \right)_{DY} + \beta I + \beta^2 C
 \]

 - \(m \) = dilepton invariant mass
 - \(\beta = 1/((\Lambda_{ij}^2)^2) \)
 - \(I \) = Drell-Yan/contact term interference
 - \(C \) = pure contact term contribution to \(\text{xsec} \)
 - enhancement at high mass

- Measure \(M_{l\bar{l}} \geq 40 \text{ GeV} \)
 - Isolated \(ee, \mu\mu \) pairs, \(p_T^i > 20-25 \text{ GeV} \)
 - Backgrounds: dijets, \(Z \rightarrow \tau\tau \), cosmic rays
Drell-Yan (cont'd)

- Normalize predictions to observed cross section for $50 < M_{ll} < 150$ GeV (removes luminosity dependence)

- Binned likelihood fit as function of Λ_{ij}^\pm:

![Graph showing $d^2\sigma/dMdy$ for different models and mass values.]

<table>
<thead>
<tr>
<th>Model (i,j)</th>
<th>Λ^+ (TeV)</th>
<th>Λ^- (TeV)</th>
<th>Λ^+ (TeV)</th>
<th>Λ^- (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL</td>
<td>3.3</td>
<td>4.2</td>
<td>3.1</td>
<td>4.3</td>
</tr>
<tr>
<td>RR</td>
<td>3.3</td>
<td>4.0</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td>LR</td>
<td>3.4</td>
<td>3.6</td>
<td>3.3</td>
<td>3.9</td>
</tr>
<tr>
<td>RL</td>
<td>3.3</td>
<td>3.7</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>VV</td>
<td>4.9</td>
<td>6.1</td>
<td>5.0</td>
<td>6.3</td>
</tr>
<tr>
<td>AA</td>
<td>4.7</td>
<td>5.5</td>
<td>4.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

- Other (representative) measurements:
 - $qqqq \Rightarrow 2.4$-2.7 TeV (DØ - submitted to PRL)
 - $eeqq \Rightarrow 2.0$-4.9 TeV (ZEUS - ICHEP '98)
 - $eeqq \Rightarrow 2.8$-6.3 TeV (OPAL - ICHEP '98)
 - $eell \Rightarrow 5.2$-11.8 TeV (ALEPH - ICHEP '98)
 - $\nu\nuqq \Rightarrow 4.2$-8.3 TeV (CCFR)
 - $\nu\nu\mu\mu \Rightarrow 3.1$ TeV (TRIUMF E185)

- Fundamental composition of matter being probed in variety of reactions; limits from ~ 2 - 11 TeV
\[M_W^2 = \frac{\pi\alpha(M_Z^2)}{\sqrt{2}G_F} \cdot \frac{1}{1 - \frac{M_W^2}{M_Z^2}} \cdot \frac{1}{1 - \Delta r} \]

- \(M_Z, \alpha, G_F \) known to better than 25 ppm
- \(\Delta r \) measure of higher order corrections in SM
 - \(\gamma \) vacuum polarization (\(\approx 0.06 \))
 - vector boson self-energies (\(M_{t_{top}}^2, \ln(M_H^2/M_W^2) \) terms)
 - new physics (?)
 - \(\Delta r \equiv 0 \) at tree level (on-shell scheme)

\[\Delta r \propto m_t^2 - m_b^2 \]

\[\Delta r \propto \ln(m_H) \]

+ Additional corrections in SUSY models
\[\rightarrow \Delta m_W \propto 250 \text{ MeV} \]

- **Precision measurement of** \(M_W \):
 - measure of radiative corrections in SM
 - with \(M_{t_{top}} \), provides constraint on \(M_H \)
 - tests the SM beyond tree level
W Mass (cont’d)

- **Longitudinal momentum of** ν **unknown ⇒ transverse mass:**
 \[
 M_T = \sqrt{2E_T^l E_T^\nu} (1 - \cos \Delta \phi_{l\nu})
 \]
 (with E_T^ν inferred from E_T)

 - M_T invariant (to 1st order) under transverse Lorentz boosts
 (less sensitive to p_T^W)
 - No analytic form for resulting Jacobian ⇒ MC

![Graph showing distribution of m_T](image)

- Extract M_W from fits to observed M_W spectra
 - Generate M_T lineshapes as function of M_W via fast MC
 - Perform likelihood fit

- **Fast Monte Carlo**
 - Model W production and subsequent decay
 - Fold in detector response, resolution effects
 - Generate resulting M_T lineshapes for various input values of M_W

- Energy scale for both experiments anchored to measured invariant masses of known resonances

- Latest Tevatron results: Run 1B (\approx 80-90 pb$^{-1}$)
 - DØ: $W \rightarrow e\nu$, PRL 80 3000 (1998), PRD accepted
 - CDF: $W \rightarrow \mu\nu$, preliminary
W Mass (cont’d)

- CDF Momentum Scale
 - Normalize observed $J/\Psi \rightarrow \mu\mu$ peak to world average J/Ψ mass (250,000 events)

\[\Delta M_{\mu^+\mu^-} \text{(MeV)} \]

\[M_{J/\Psi}^{\text{meas}} = 3096.2 \pm 1.5 \text{ MeV} \]
\[M_{J/\Psi}^{PDG} = 3096.88 \pm 0.04 \text{ MeV} \]
\[M_{J/\Psi}^{\text{meas}} / M_{J/\Psi}^{PDG} = 0.99977 \pm 0.00048 \]

- Verified using $\Upsilon \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$ samples

- Dominant uncertainties are muon upstream energy loss and \(p_T \) dependence over relevant 3–40 GeV range
 \((\Delta M_{J/\Psi} = 1 \text{ MeV}, \Delta M_W = 26 \text{ MeV})\)

\[\Delta M_W = 40 \text{ MeV/c}^2 \]
W Mass (cont’d)

• DO Electromagnetic Energy Scale
 ▶ Assume energy response of form: $E_{\text{obs}} = \alpha E_{\text{true}} + \delta$
 ▶ Implies $M_{\text{meas}} \approx \alpha M_{\text{true}} + \delta f \left(f = \frac{2(E_1 + E_2)}{m} \sin^2 \gamma/2 \right)$
 ▶ Compare against MC prediction in (α, δ) grid for resonances reconstructed in situ:
 * $Z \rightarrow ee$
 * $\pi^0 \rightarrow \gamma \gamma \rightarrow eee$
 * $J/\Psi \rightarrow ee$

![Graph showing α_{EM} vs δ_{EM}](image)

• J/Ψ and π^0 constrain δ; Z constrains α

• Including systematic errors from underlying event, non-linearities at low E:
 \[
 \alpha = 0.9533 \pm 0.0008 \\
 \delta = -0.16^{+0.03}_{-0.21} \text{ GeV} \\
 \Delta M_W = 70 \text{ MeV}/c^2 \\
 \text{(dominated by } Z \text{ statistics)}
 \]
W Mass (cont’d)

- CDF Momentum Resolution

 2-d fit for M_Z and $\sigma(1/p_T)$ in $Z \rightarrow \mu\mu$ events

 \[
 \sigma(1/p_T) = (1.01 \pm 0.05) \times 10^{-3}
 \]

 $\Delta M_W = 25$ MeV/c²

- DØ EM Energy Resolution

 Use width of $Z \rightarrow ee$ to constrain constant term, C, in EM energy resolution: $\sigma(E) = \sqrt{C^2 + \frac{E}{\sqrt{E_t}}}$

 χ^2/dof = 33.5/39

 $C = (1.5^{+0.27}_{-0.35})\%$

 $\Delta M_W = 20$ MeV/c²
W Mass (cont’d)

- Recoil Energy Scale and Resolution
 - Hadronic scale and resolution obtained from p_T balance in $Z \rightarrow ee, \mu\mu$ decays (constrained)
 - For equal EM and hadronic response, $p_T^{ee} = p_T^{\mu\mu}$ (on average)
 - Recoil resolution extracted from width of $|p_T^{ee} + p_T^{\mu\mu}|$ distribution
 (Project quantities onto axis defined by inner bisector of p_T^{ee} and $p_T^{\mu\mu}$ ("\(\eta\) axis))
 - Hadronic scale determined relative to scale for charged leptons

- DØ:
 - $\Delta M_W = 20$ MeV/c² (recoil energy scale)
 - $\Delta M_W = 25$ MeV/c² (recoil energy resolution)

- CDF:
 - $\Delta M_W = 90$ MeV/c² (recoil energy scale and resolution)
 - Set conservatively, will improve
W Production Model

\(p_T^W \) spectrum constrained by \(p_T^Z \):

- Large \(p_T \) region described by pQCD
- Low \(p_T \) region: non-perturbative regime
 - Ladinsky/Yuan: LO QCD matched with resummed calculation (*PRD 50, 4239 (1994)*)
 - 3 parameters describing non-perturbative effects: \(g_1, g_2, g_3 \)
 - \(g_2 \) most sensitive to shape effects
- Use \(p_T^Z \) spectra to fit for \(g_2 \) (and \(\Lambda_{QCD} \)):
 - \(g_2 = 0.59 \pm 0.095 \text{(stat)} \pm 0.052 \text{(sys)} \pm 0.043 \text{(pdf)} \) GeV\(^2\)
- Used to generate \(p_T^W \) spectra
W Charge Asymmetry, PDFs

- W production asymmetry
 - u quarks have larger momentum than d quarks
 - W⁺ boosted along p direction (u̅d → W⁺)
 - W⁻ boosted along p̅ direction (ūd → W⁻)

 \[A(y_t) = \frac{d\sigma^+/dy_t - d\sigma^-/dy_t}{d\sigma^+/dy_t + d\sigma^-/dy_t} \]

 (Unfold V-A charge asymmetry of decay leptons: \(\sim (1 \pm \cos \theta)^2\))

- Asymmetry measurement provides useful constraints on parton distribution functions in the low x region (0.007 < x < 0.24) at \(Q^2 \approx M_W^2\)

- W production and decay modeling (\(p_T^W\), PDFs, radiative decays, \(\Gamma_W\)):
 - DØ: \(\Delta M_W = 30 \text{ MeV/c}^2\)
 - CDF: \(\Delta M_W = 55 \text{ MeV/c}^2\)
W Mass (cont’d)

Summary of Errors on M_W

(MeV/c^2)

<table>
<thead>
<tr>
<th>Source</th>
<th>CDF</th>
<th>DØ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(μ)</td>
<td>(e)</td>
</tr>
<tr>
<td>Statistical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W sample</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>Z sample (e energy scale)</td>
<td>–</td>
<td>65</td>
</tr>
<tr>
<td>Total Statistical</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Systematic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td>Lepton energy resolution</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Calorimeter linearity</td>
<td>–</td>
<td>20</td>
</tr>
<tr>
<td>Recoil modeling</td>
<td>90</td>
<td>35</td>
</tr>
<tr>
<td>W production model</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Lepton angle calibration</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td>Fitting</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>120</td>
<td>65</td>
</tr>
<tr>
<td>Total Error</td>
<td>155</td>
<td>115</td>
</tr>
</tbody>
</table>
W Mass (cont’d)

Transverse Mass Fits/Results

DO($W \rightarrow e\nu$)

χ^2/dof = 79.5/60
KS Prob = 25%

$M_W^{DO} = 80.440 \pm 0.095$ (stat.) ± 0.065 (syst.) GeV/c2

CDF($W \rightarrow \mu\nu$)

CDF(1B) Preliminary
χ^2/df = 158/139 ($50 < M_T < 120$)
χ^2/df = 62/69 ($65 < M_T < 100$)

$M_W^{CDF} = 80.430 \pm 0.100$ (stat.) ± 0.120 (syst.) GeV/c2
W Mass (cont’d)

Direct W Mass Measurements

- **80.360 +/- 0.370** \(\rightarrow \) UA2 \((W \rightarrow e\nu)\)
- **80.410 +/- 0.180** \(\rightarrow \) CDF (Run 1A, \(W \rightarrow e\nu, \mu\nu\))
- **80.430 +/- 0.155** \(\rightarrow \) CDF (Run 1B*, \(W \rightarrow \mu\nu\))
- **80.375 +/- 0.120** \(\rightarrow \) CDF combined*
- **80.350 +/- 0.270** \(\rightarrow \) DØ (Run 1A, \(W \rightarrow e\nu\))
- **80.440 +/- 0.115** \(\rightarrow \) DØ (Run 1B*, \(W \rightarrow e\nu\))
- **80.430 +/- 0.110** \(\rightarrow \) DØ combined

- **80.400 +/- 0.090** \(\rightarrow \) Hadron Collider Average* (50 MeV Common Error)
- **80.370 +/- 0.090** \(\rightarrow \) LEP II* (ee \(\rightarrow WW\))

- **80.385 +/- 0.065** \(\rightarrow \) World Average

* : Preliminary

World Average = UA2 + DØ + CDF + LEP2 (Direct)

Including NuTeV \((M_{W}^{\nu T} = 80.250 \pm 0.110 \text{ GeV}/c^2)\) gives:

\[M_{W}^{all} = 80.350 \pm 0.055 \text{ GeV}/c^2\]
Prospects at the Tevatron

- Most systematic errors in M_W are statistically limited
- Further analysis of Run 1 data:
 - DØ: use forward electrons
 $\Rightarrow \Delta M_W \sim 100 \text{ MeV/c}^2$
 - CDF: Finalize μ result (reduced errors), include e channel
 $\Rightarrow \Delta M_W \sim 90 \text{ MeV/c}^2$
 - Final Tevatron Run 1 result:
 $\Rightarrow \Delta M_W \sim 75 \text{ MeV/c}^2$
- Run 2 with Main Injector – begins April, 2000
 - $\times 20$ more \mathcal{L}_dt ($> 2 \text{ fb}^{-1}$)
 - $\mathcal{L}_\text{inst} \approx \times 10$
 - bunch spacing: $3.5 \mu\text{s} \rightarrow 400 (132) \text{ nsec}$
- Extensive detector upgrades now in progress:
 - DØ:
 * new solenoid (precision μ's), new inner tracker
 (silicon, fiber tracker, preshowers), muon upgrade
 - CDF:
 * new inner tracker (silicon and drift chamber), new
 scintillator-based forward calorimeter, extended μ
 coverage
- Each experiment: $\Delta M_W \sim 40 \text{ MeV/c}^2$
- Combined: $\Delta M_W \sim 25 \text{ MeV/c}^2$, $\Delta M_{\text{top}} \sim 2 \text{ GeV/c}^2$
World Avg (Direct) $M_W = 80.385 \pm 0.065$ GeV/c2
(UA2+$D\bar{0}$+CDF+LEP2)

$D\bar{0}$+CDF Top Mass: $M_{top} = 173.9 \pm 5.0$ GeV/c2
(see talk by G. Apollinari)
Trilinear Gauge Boson Couplings

- Direct consequence of $SU(2) \times U(1)$ gauge symmetry
- Reduced Lagrangian described by four coupling parameters in each of the W and Z sectors (CP conserving/violating):
 - WWV ($V = \gamma$ or Z): $\kappa, \lambda, \bar{\kappa}, \bar{\lambda}$
 - $ZV\gamma$ ($V = \gamma$ or Z): $h_{30}, h_{40}, h_{10}, h_{20}$
- Gauge invariance of SM constrains boson self-couplings:
 - $\Delta \kappa = \kappa - 1 = \lambda = 0$
 - $\bar{\kappa} = \bar{\lambda} = 0$
 - all $h_{i0} = 0$
- WWV parameters related to fundamental properties of the W boson:
 $\mu_W = \frac{e}{2M_W} (1 + \kappa + \lambda)$
 $Q_W = \frac{e}{M_W} (\kappa - \lambda)$
- If couplings anomalous:
 - Gauge cancellations destroyed
 - Increase of production cross section at large \sqrt{s}
 - Change in differential distributions (i.e., p_T^d, p_T^w)
 - Form factor introduced to avoid violation of unitarity:
 $f f = \left[1/(1 + s/\Lambda^2)\right]^n, n = 2(WWV), 3(h_{1,3}), 4(h_{2,4})$
- Investigation of trilinear couplings provides important test of SM – could provide window to new physics
Wγ Production

![Diagrams showing W → lν, Production, Radiative, WWγ vertex]

- **Event selection:**
 - Isolated high p_T muon or electron + large E_T
 - Isolated photon with $p_T^γ > 7$ (CDF) or 10 (DØ) GeV/c
 - $ΔR_{lγ} > 0.7$ (suppresses contribution from radiative decays)

- **Primary background:** W + jets
 (with jet → $π^0 → γγ$)

- **Binned likelihood fit to $p_T^γ$ spectrum**

<table>
<thead>
<tr>
<th>$\frac{1}{L} \cdot dt \ (pb^{-1})$</th>
<th>DØ</th>
<th>CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of candidates</td>
<td>93</td>
<td>67</td>
</tr>
<tr>
<td>Total background</td>
<td>42.9 ± 5.3</td>
<td>26.4 ± 3.1</td>
</tr>
</tbody>
</table>
$W\gamma$ Production (cont’d)

$D\bar{O} \ p_T^\gamma$ spectrum

- $D\bar{O}$ limits at 95% CL, $\Lambda = 1.5$ TeV:

 $-0.93 < \Delta\kappa_\gamma < 0.94$ (for $\lambda_\gamma = 0$)

 $-0.31 < \lambda_\gamma < 0.29$ (for $\Delta\kappa_\gamma = 0$)

* Independent of WWZ vertex
 (unlike WW production)

* First direct evidence that photon couples to more
 than just electric charge of the W

 ▶ $U(1)_{EM}$-only coupling ruled out at 96% CL
 (assuming $\lambda = \bar{\kappa} = \bar{\lambda} = 0$)
$WW \rightarrow l\nu l\nu \ (l = e, \mu)$

- Event selection:
 - Two isolated high-p_T leptons ($p_T > 15-25$ GeV/c)
 - $E_T > 20-25$ GeV
- Backgrounds: $Z \rightarrow \tau\tau$, Drell-Yan, $t\bar{t}$

<table>
<thead>
<tr>
<th></th>
<th>DØ</th>
<th>CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int L dt \ (pb^{-1})$</td>
<td>97</td>
<td>108</td>
</tr>
<tr>
<td>Number of candidates</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total background</td>
<td>3.1 ± 0.4</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>N_{SM}</td>
<td>2.10 ± 0.15</td>
<td>3.5 ± 1.2</td>
</tr>
<tr>
<td>σ_{WW}</td>
<td>< 37.1 pb (95% CL)</td>
<td>(10.2^{+6.3}_{-5.1} ± 1.6) pb</td>
</tr>
<tr>
<td>Standard Model</td>
<td>$\sigma_{WW} = (9.5 ± 1.0)$ pb</td>
<td></td>
</tr>
</tbody>
</table>

- To obtain limits on anomalous couplings:
 - CDF fits to total number of events
 - DØ fits to lepton p_T spectrum (better limits).
 For $\Lambda = 1.5$ TeV:

 \[-0.62 < \Delta\kappa < 0.77 \ (\text{for } \lambda = 0)\]
 \[-0.53 < \lambda < 0.56 \ (\text{for } \Delta\kappa = 0)\]
$WW, WZ \rightarrow l\nu jj$, $lljj$ ($l = e, \mu$)

- Event selection:
 - One isolated high-p_T lepton ($p_T > 20-25$ GeV/c)
 - Two or more jets with $E_T > 20-30$ GeV, and jet-jet invariant mass consistent with a W or Z
 - $p_T > 20–25$ GeV, or a second high-p_T lepton (for $lljj$ events)

- Large backgrounds from $W +$ jets and QCD multi-jets

- To obtain limits on anomalous couplings:
 - CDF: $p_T(jj) > 200$ GeV/c (110 pb$^{-1}$)
 - DØ: binned likelihood fit to $p_T^{\ell\nu}$ spectrum (86 pb$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>DØ</th>
<th>CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CL Limits</td>
<td>$-0.43 < \Delta \kappa < 0.59$</td>
<td>$-0.49 < \Delta \kappa < 0.54$</td>
</tr>
<tr>
<td>($\Lambda = 2$ TeV)</td>
<td>$-0.33 < \lambda < 0.36$</td>
<td>$-0.35 < \lambda < 0.32$</td>
</tr>
</tbody>
</table>

* Both experiments exclude $U(1)_{EM}$-only point ($\kappa_Z = \lambda_Z = 0$) at 99% CL when SM $WW\gamma$ couplings are assumed
 ⇒ First direct evidence of WWZ coupling
DØ Combined Analysis of $WW\gamma$ and WWZ Couplings

- DØ has performed a simultaneous fit to:
 - p_T^γ spectrum in $W\gamma$ data
 - p_T^l distribution in WW dilepton data
 - p_T^W distribution in $WW, WZ \rightarrow e\nu jj$ events

- Limits on coupling parameters extracted from fit, taking into account correlations

![Diagram showing the limits on coupling parameters](image)

- For $\Lambda = 2.0$ TeV, $\lambda_\gamma = \lambda_Z$ and $\Delta\kappa_\gamma = \Delta\kappa_Z$:
 - $-0.30 < \Delta\kappa < 0.43$ ($\lambda = 0$)
 - $-0.20 < \lambda < 0.20$ ($\Delta\kappa = 0$)
DØ Combined Analysis:

\(\alpha_{B\phi}, \alpha_{W\phi}, \alpha_W\) Parameterization

- Allows comparison and combined analysis with LEP2 results. LEP2 parameter set:

 \[\alpha_{B\phi} \equiv \Delta \kappa_\gamma - \Delta g_1^Z \cos^2 \theta_W \]

 \[\alpha_{W\phi} \equiv \Delta g_1^Z \cos^2 \theta_W \]

 \[\alpha_W \equiv \lambda_\gamma \]

 \[\text{all } \alpha = 0 \text{ in SM} \]

- with constraints:

 \[\Delta \kappa_Z = -\Delta \kappa_\gamma \tan^2 \theta_W + \Delta g_1^Z \]

 \[\lambda_Z = \lambda_\gamma \]

<table>
<thead>
<tr>
<th>DØ (combined)</th>
<th>LEP2 (combined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-0.77 < \alpha_{B\phi} < 0.58)</td>
<td>(-0.44 < \alpha_{B\phi} < 0.95)</td>
</tr>
<tr>
<td>(-0.22 < \alpha_{W\phi} < 0.44)</td>
<td>(-0.12 < \alpha_{W\phi} < 0.13)</td>
</tr>
<tr>
<td>(-0.20 < \alpha_W < 0.20)</td>
<td>(-0.21 < \alpha_W < 0.27)</td>
</tr>
</tbody>
</table>

95% CL, \(\Lambda = 2\) TeV
DØ and LEP2 Combined Analysis

\(\alpha_{B\Phi} \) at LEP+D0 (preliminary)

\begin{align*}
\text{ALEPH} & : 0.28 \pm 0.30 \\
\text{DELPHI} & : 0.31 \pm 0.51 \\
\text{L3} & : -0.43 \pm 0.27 \\
\text{OPAL} & : 0.25 \pm 0.81 \\
\text{LEP} & : -0.04 \pm 0.32 \\
\text{D0} & : -0.08 \pm 0.84 \\
\text{LEP+D0} & : -0.05 \pm 0.22
\end{align*}

\(-0.42 < \alpha_{B\Phi} < 0.43\)

\(\alpha_{W\Phi} \) at LEP+D0 (preliminary)

\begin{align*}
\text{ALEPH} & : -0.14 \pm 0.27 \\
\text{DELPHI} & : 0.01 \pm 0.11 \\
\text{L3} & : -0.12 \pm 0.10 \\
\text{OPAL} & : -0.03 \pm 0.13 \\
\text{LEP} & : -0.04 \pm 0.06 \\
\text{D0} & : 0.11 \pm 0.18 \\
\text{LEP+D0} & : -0.03 \pm 0.06
\end{align*}

\(-0.14 < \alpha_{W\Phi} < 0.10\)

\(\alpha_W \) at LEP+D0 (preliminary)

\begin{align*}
\text{ALEPH} & : 0.04 \pm 0.51 \\
\text{DELPHI} & : -0.11 \pm 0.18 \\
\text{L3} & : -0.25 \pm 0.23 \\
\text{OPAL} & : 0.05 \pm 0.23 \\
\text{LEP} & : -0.09 \pm 0.13 \\
\text{D0} & : 0.00 \pm 0.18 \\
\text{LEP+D0} & : -0.03 \pm 0.08
\end{align*}

\(-0.18 < \alpha_W < 0.13\)

(LEPEWWG/TGC/98-01, DØ Internal Note # 3437 (May, 1998))
$Z\gamma$ Production

- Both DØ and CDF have performed measurements in the $Z(l^+l^-)\gamma$ mode:
 - Two high-p_T leptons (ee or $\mu\mu$)
 - One photon with $E_T^\gamma > 7$–10 GeV
 - Major background: $Z+$ jet (→ fake γ)

- DØ (CDF) finds 35 (33) events with a background of 5.9 (1.4) in ~ 105 (67) pb$^{-1}$.

- Measurements agree with SM expectations. Limits found using binned maximum likelihood fit to E_T^γ spectrum.

★ Most sensitive limits come from DØ measurement of $Z(\nu\nu)\gamma$:
 - Larger branching ratio than charged leptonic decay modes
 - No final state radiation from final state l^+l^-
 - High detection efficiency (one final state particle)
 - Backgrounds much higher ($W \rightarrow e\nu$, cosmic ray and beam halo muon bremsstrahlung) ⇒ tight selection cuts:
 - * $E_T^\gamma > 40$ GeV
 - * $E_T > 40$ GeV
 - * no jets with $E_T > 15$ GeV
 - Bremsstrahlung background reduced using “photon tracking”: “direction” of EM cluster consistent with event vertex
 - $W \rightarrow e\nu$ reduced via “hit counting” in tracking road about photon, and hard cuts on E_T^γ and \not{E}_T (above Jacobian peak)
Z(\nu\nu)\gamma Candidate from DØ

\[E_T^Z = 67.9 \text{ GeV} \]
\[\mathcal{E}_T = 56.6 \text{ GeV} \]
$Z(\nu\nu)\gamma$ (cont'd)

- Find 4 events over background of 5.8 ± 1.0 in 13 pb^{-1}. SM expectation: 1.8 ± 0.2 events.

- Anomalous coupling limits found using binned maximum likelihood fit to E_T^γ spectrum:

<table>
<thead>
<tr>
<th>$\nu\nu$</th>
<th>h_{40}^Z</th>
<th>h_{10}^γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ee,\mu\mu,\nu\nu$</td>
<td>$</td>
<td>h_{30}^Z</td>
</tr>
<tr>
<td>$</td>
<td>h_{39}^Z</td>
<td>< 0.36$, $</td>
</tr>
</tbody>
</table>

95% CL, $\Lambda = 750 \text{ GeV}$

Most stringent direct limits on these couplings from any experiment.
Summary

- Production cross section $\sigma \cdot B(W \rightarrow l\nu)$ measured for e, μ, and τ
 - agree with $\mathcal{O}(\alpha_s^2)$ theory
 - $g^W_\tau/g^W_e = 1.004 \pm 0.032$

- W boson width:
 - Indirect: $\Gamma_W = 2.126 \pm 0.092$ GeV
 - Direct: $\Gamma_W = 2.19 \pm 0.19$ GeV

- Rare W decays:
 - $\Gamma(W \rightarrow \pi\gamma)/\Gamma(W \rightarrow e\nu) \leq 7 \times 10^{-4}$
 - $\Gamma(W \rightarrow D_{s\gamma})/\Gamma(W \rightarrow e\nu) \leq 1.1 \times 10^{-2}$

- Limits on compositeness scale Λ from Drell-Yan production range from:
 - $eeqq$: $\Lambda^{+-}_{LL} \geq 3.3$, $\Lambda^{-+}_{VV} \geq 6.1$
 - $llqq$: $\Lambda^{+-}_{RR} \geq 3.0$, $\Lambda^{-+}_{AA} \geq 6.3$

- Trilinear gauge boson couplings:
 - First direct evidence of WWZ coupling
 - First direct evidence that the $W\gamma$ coupling is not purely electromagnetic

- $WW\gamma$, WWZ:
 - $-0.30 < \Delta \kappa < 0.43$, $-0.20 < \lambda < 0.20$
 - $-0.77 < \alpha_{B\phi} < 0.58$, $-0.22 < \alpha_{W\phi} < 0.44$
 - $-0.20 < \alpha_W < 0.20$

- $ZZ\gamma$, $Z\gamma\gamma$:
 - $|h_3^Z| < 0.36$, $|h_4^Z| < 0.37$, $|h_4^{Z\gamma}| < 0.05$

- W Mass:
 - Hadron Collider Average: $M_W = 80.400 \pm 0.090$
 - (UA2+DØ+CDF)
 - Direct World Average: $M_W = 80.385 \pm 0.065$
 - (UA2+DØ+CDF+LEP2)
$WW, WZ \rightarrow l\nu jj, lljj \ (l = e, \mu)$

Event selection:

- One isolated high-p_T lepton ($p_T > 20\text{-}25 \text{ GeV/c}$)
- Two or more jets with $E_T > 20\text{-}30 \text{ GeV}$, and jet-jet invariant mass consistent with a W or Z
- $\not{E}_T > 20\text{-}25 \text{ GeV}$, or a second high-$p_T$ lepton (for $lljj$ events)

- Large backgrounds from $W+\text{jets}$ and QCD multi-jets
- To obtain limits on anomalous couplings:
 - CDF: $p_T(jj) > 200 \text{ GeV/c} \ (110 \text{ pb}^{-1})$
 - DØ: binned likelihood fit to p_T^{enu} spectrum (96 pb$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>DØ</th>
<th>CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CL Limits</td>
<td>$-0.43 < \Delta \kappa < 0.59$</td>
<td>$-0.49 < \Delta \kappa < 0.54$</td>
</tr>
<tr>
<td>($\Lambda = 2 \text{ TeV}$)</td>
<td>$-0.33 < \lambda < 0.36$</td>
<td>$-0.35 < \lambda < 0.32$</td>
</tr>
</tbody>
</table>

- Both experiments exclude $U(1)_{EM}$-only point ($\kappa_Z = \lambda_Z = 0$) at 99% CL when SM $WW\gamma$ couplings are assumed
- First direct evidence of WWZ coupling