RESULTS from the
CHORUS EXPERIMENT

Maria-Gabriella Catanesi
CERN - Geneva (Switzerland)

XXVI Slac Summer Institute
August 3-14 '98
OVERVIEW

- Physics Goals
- The Detector
- Data Selection and Analysis
- Results:
 - Oscillation Limit
 - Ds Observation
- Outlook and Conclusions
$\nu_\mu \rightarrow \nu_\tau$ Oscillations

- If $m_\nu > 0$ and mixing of family

- If $m_\nu \sim 10$eV (see-saw models)

ν_τ it's a good candidate as hot dark matter!

It's important study process involving ν_τ

- $\text{Prob}(\nu_\mu \rightarrow \nu_\tau) = \sin^2(2\theta) \sin^2(\frac{\Delta m^2 L}{4E})$

- The previous limit for $\nu_\mu \rightarrow \nu_\tau$ oscillation (E531) was $\sin^2(2\theta) < 5 \times 10^{-3}$

Explore mixing angles down to $\sin^2(2\theta) \sim 10^{-4}$

- Charm Physics

- 3 -
CERN Wide Band ν Beam

High Intensity: $> 2 \times 10^{13}$ protons/cycle

High Energy: $< E_{\nu_\mu} > \approx 27$ GeV

Low Contamination: $\frac{N_{\nu_e}}{N_{\nu_\mu}} \sim 3 \times 10^{-6}$

Two 6 ms bursts/ 14.4 s

$L \approx 600$ m
CHORUS is...

- A classic "appearance experiment"....

- Aim:

CHORUS looks for:

identification of ν_τ EVENT by EVENT

detecting both ν_τ interaction and τ decay vertices

- In particular

We should isolate "few" signal events

CC interaction: $\nu_\tau N \rightarrow \tau^- X$

$\rightarrow \mu^- \nu \nu$ 18%

$\rightarrow h^- \nu + n\pi^0$ 50%

$\rightarrow h^- h^- h^+ + n\pi^0$ 14%

- From the large background of

- $\nu_\mu N \rightarrow \mu^- X$ (CC)

- $\nu_\mu N \rightarrow \nu_\mu X$ (NC)
The Chorus Idea

- Use a "big" active target (800 kg) of Nuclear Emulsions
 \((\sim 1.\mu m \text{ of resolution})\)

 \(\tau^- \text{ has lifetime } c\tau=90 \mu m \Rightarrow \sim 1.5 \text{ mm flight path}\)

 with:

- Automatic Scanning facilities
 (Reduce the Scanning Time)

- High resolution tracking devices
 (Reduce the Scanning Area)

- Electronic Detectors with good \(E, P, \theta\) resolution
 (Scanning Sample Reduction and Kinematical Reconstruction)
The CHORUS Detector

Calorimeter
\[E_{\text{had}}, \Theta_{\text{had}} \]
\[\Delta E/E \sim 0.35 / \sqrt{E} \]

Magnet Spectrometer
\[q_{\text{had}}, p_{\text{had}} \]
\[\Delta p/p \sim 0.25 @ 5 \text{ GeV/c} \]

Muon Spectrometer
\[p_\mu, q_\mu \]
\[\Delta p/p \sim 10 - 20 \]
(for \(p < 100 \text{ GeV} \))

Emulsion Target and Target Tracker

T2
T1

G. Cates, SS11998
Target Tracker resolution

- Obtained by comparing reconstructed tracks with tracks scanned in emulsion
- Resolution: 200 μm, 3 mrad
Automatic Scanning

Automatic microscope

CCD

TOMOGRAPHIC IMAGE

TO VIDEO PROCESSOR

reconstruction by hardware video processor (1–3 sec/event)

emulsion

× 50
focal depth 5μm
(one view
512 × 512 pixels
120 × 150μm²)

frame (formed by adjacent views)

track (● matching grains)
μ⁻ Channel

Flightlength: \[20 \mu m \leq \gamma c \tau \leq 5 \text{ mm}\]

...to reject K decays

Conditions for Daughter-Track:

\[\tau \rightarrow \mu \bar{\nu}_\mu \nu_\tau\]

- Track to follow: negatively charged muon

\[P_T \geq 250 \text{ MeV/c}\]

\[P_{\mu^-} \leq 30 \text{ GeV/c}\]

- Main BG Source:

\[\bar{\nu}_\mu N \rightarrow \mu^+ X D^-\]

escapes identification \[\rightarrow \mu^- \bar{\nu}_\mu K^0\]

\[\frac{10^{-7}}{N_{\nu_\mu}^{\text{obs}}}\]
$\tau \rightarrow 50\% \nu_\tau h^- (n\pi^0)$

- Track to follow: negatively charged hadron

- Kinematical Cut:

 $1 \text{GeV/c} \leq P_{h^-} \leq 20 \text{GeV/c}$

 $P_T \geq 250 \text{MeV/c}$

- Main BG Source:

 $\bar{\nu}_\mu N \rightarrow \mu^+ X D^-$

 escapes identification ...

 $h^- + \text{neutr.} \approx \frac{10^7}{N_{\nu_\mu}}$

 $h^- N \rightarrow h^- N$

 (WK) without visible recoil ...

 $\approx \frac{10^6}{N_{\nu_\mu}}$
Vertex Kinematics: Transverse Plane

Signal: τ^-

$\nu_\tau N \rightarrow \tau^- X$

$\Theta \sim 180^\circ$

π^- (or other τ^- daughters)

Background:

"White Kink"

$\nu_\mu N \rightarrow \nu_\mu \pi X$

Θ small

Charm (D^-) Decays

$\bar{\nu}_\mu N \rightarrow \mu^+ D^- X$

$\Theta \equiv$ Transverse Angle between Kink Parent and Hadron Shower
Vertex location

vertex plate

Location efficiency

Vertex location procedure
Detection Strategy

○ SHORT DECAY (1 plate) [30%]

Impact Parameter Methode
\[\nu_\mu \rightarrow IP \sim 0 \]
\[\nu_\tau \rightarrow IP > 0 \]

○ LONG DECAY, LARGE ANGLE [60%]

Video Image Analysis
Tracking through CCD pixel clusters from 96 emulsion slices

+ 1995:

Parent Track Search
Connection of parent with muon by IP
BG track suppression

○ LONG DECAY, SMALL ANGLE [10%]

\[P_T = \frac{P_\mu}{P_\nu} \cdot |\phi_\mu - \phi_\nu| \geq 250 \text{ MeV/c} \]
"Short" Decay (27\%)}

vertex and decay in same plate

VERTEX PLATE
800 \(\mu \)m

NOM ZERO IMPACT PARAMETER

\(\nu_{\tau} \)

ZERO IMPACT PARAMETER

\(\nu_\mu \)

SB \(\mu^- \)

tracker predictions

SB \(\mu^- \)

tracker predictions

measured track segment

impact parameter cut

Data

to eye scan

\(\nu_{\tau}.MC \)

arbitrary units

Impact par. [\(\mu \)m]
Vertex Properties

<table>
<thead>
<tr>
<th>Nuclear Fragments:</th>
<th>Shower particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 200 grains/ 100 (\mu m)</td>
<td>30 – 40 grains/100 (\mu m)</td>
</tr>
<tr>
<td>(\sim) 5.3 tracks/ event</td>
<td>(\sim) 3.6 tracks/event</td>
</tr>
</tbody>
</table>

From University of Bari
\[\nu N \rightarrow D^+ \mu^- X \]

Dimuon Event in the Emulsion

160 units
Video image of vertex reconstruction in Emulsion at Nagoya

Video image of tracks reconstruction at the vertex in two projections
Data
(data taking finished in 1997)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pot/10^{19}</td>
<td>0.81</td>
<td>1.20</td>
<td>1.38</td>
<td>1.67</td>
<td>5.06</td>
</tr>
<tr>
<td>Chorus efficiency</td>
<td>0.77</td>
<td>0.88</td>
<td>0.94</td>
<td>0.94</td>
<td>0.90</td>
</tr>
<tr>
<td>Potato/10^{19} *)</td>
<td>0.62</td>
<td>1.06</td>
<td>1.30</td>
<td>1.76</td>
<td>4.74</td>
</tr>
<tr>
<td>Deadtime</td>
<td>0.10</td>
<td>0.10</td>
<td>0.13</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Main triggers</td>
<td>388 k</td>
<td>547 k</td>
<td>617 k</td>
<td>719 k</td>
<td>2271K</td>
</tr>
<tr>
<td>CC per main trigger</td>
<td>0.30</td>
<td>0.37</td>
<td>0.38</td>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>1\mu events</td>
<td>66911</td>
<td>110916</td>
<td>129669</td>
<td>151105</td>
<td>360K</td>
</tr>
<tr>
<td>0\mu events</td>
<td>17731</td>
<td>27841</td>
<td>32548</td>
<td>37929</td>
<td>120K</td>
</tr>
<tr>
<td>1\mu scanned so far</td>
<td>63%</td>
<td>45%</td>
<td>56%</td>
<td>0%</td>
<td>36%</td>
</tr>
<tr>
<td>0\mu scanned so far</td>
<td>50%</td>
<td>30%</td>
<td>0%</td>
<td>0%</td>
<td>15%</td>
</tr>
<tr>
<td>1\mu located so far</td>
<td>18286</td>
<td>20642</td>
<td>30128</td>
<td>0</td>
<td>68156</td>
</tr>
<tr>
<td>0\mu located so far</td>
<td>3401</td>
<td>3805</td>
<td>0</td>
<td>0</td>
<td>7206</td>
</tr>
</tbody>
</table>

*) Protons On Target And Tape On
Results

36182N_{1\mu} + 6844N_{0\mu} \Rightarrow \text{Accepted for publication on Phys. Lett. B (CERN - EP/98 - 73)}

New data: 31974N_{i\mu} + 362N_{0\mu} \text{ events have been analysed}

No \nu_{\tau} candidate has been found!

@ 90\% C.L. \quad P_{\mu\tau} \leq \frac{2.38 \cdot r_\sigma \cdot r_A}{BR_{\mu} \cdot <\varepsilon_{\tau\mu}> \cdot [N_{\mu} + N^{eq}_{\mu}]} = 6.0 \cdot 10^{-4}

where \quad N^{eq}_{\mu} = (N_{\mu})_{0-\mu} \cdot \sum_{i=2}^{4} \frac{<A_i>}{<A_{\tau\mu}>} \cdot \frac{<\varepsilon_i>}{<\varepsilon_{\tau\mu}>} \cdot \frac{BR_i}{BR_{\mu}}

if i=4 the \mu is not identified
The exclusion plot (@ 90% C.L.)
A special event

\[D_s^* + N \rightarrow D_s^+ + \gamma \]

\[\nu_\mu N \rightarrow \mu^- \]

Parallel session 5 July 25th talk given by O. Melzer
INTERPRETATION

- Two Decays within 215 μm

⇒ CHARM Decay

- Double KinK:

\[D^+ \rightarrow K^+ \rightarrow \mu^+ \quad \text{Prob: } 9 \times 10^{-4} \]
\[D_s^+ \rightarrow K^+ \rightarrow \mu^+ \quad \text{Prob: } 2 \times 10^{-4} \]
\[D_s^+ \rightarrow \omega K \rightarrow \mu^+ \quad \text{Prob: } 3 \times 10^{-3} \]
\[D_s^+ \rightarrow K^+ \rightarrow \mu^+ \quad \text{Prob: } 0.96 \]

- \(\gamma\) Conversion

\[D_s^* \rightarrow D_s \gamma \]

- neutral particle interaction in calorimeter

⇒ Signal of a neutron
INTERPRETATION-2

- ...Small Q^2 ... Small t

$$Q^2 = (0.8 \pm 0.1) \text{ GeV}^2/c^2$$

$$t = (1.1 \pm 0.4) \text{ GeV}/c^2/c^2$$

- ...no nuclear break-up at the primary vertex

DIFFRACTIVE PRODUCTION of D_s^*
OUTLOOK and CONCLUSIONS

- The Electronic Detector Data Taking finished successfully in 1997 and the Emulsion Scanning is goin on

- The Automatic Vertex location is realible and fast

- The Automatic Kink finding procedure works and is improving in speed and efficency

- When we will complete the scanning of the whole statistic we will gain:
 - a factor 3.0 for the 1 μ sample
 - a factor 6.7 for the 0 μ sample

If no τ candidate will be found:

\[\sin^2(2\theta) \sim 2 \times 10^{-4} \]