B-physics Results from DØ

Andrei Nomerotski (Fermilab) 6/10/2004

• This talk will cover things related to B Physics
 ♦ Detector performance
 ♦ Analyses
 ▲ in more detail about semileptonic modes
 ♦ Prospects for Bs oscillations

• Current datasets
 ~350 pb⁻¹ on tape
 ~250 pb⁻¹ analyzed
 ~100 pb⁻¹ Run I
Good performance of Accelerator Division in 2004

- Record peak luminosity two days ago: $76 \times 10^{30} \text{ 1/cm/sec}^2$
- Record integrated lumi last week: $13.5 \text{ pb}^{-1} \text{ /week}$
- DØ recorded $\sim 150 \text{ pb}^{-1}$ in 2004
Delivered Luminosity

FY04 (as of June 3rd, 2004):
Delivered 197 pb⁻¹
Design goal 306 pb⁻¹

Summer shut-down: August 23rd for 13 weeks
Peak Luminosity

![Graph showing peak luminosity over time with dates on the x-axis and luminosity in units of $\mu b^{-1}/sec$ on the y-axis. The graph includes data points, curves labeled 'Meas', 'Design', and 'Base'.]
Monthly efficiency

D0 & CDF Data Taking Efficiency

D0 (from April 19th 2002)
CDF (from February 9th 2002)

Efficiency

Feb-02 Apr-02 Jun-02 Aug-02 Oct-02 Dec-02 Feb-03 Apr-03 Jun-03 Aug-03 Oct-03 Dec-03 Feb-04 Apr-04

Through May 31 2004
B Physics at DZero

• Will present here
 ♦ Measurement of Lifetime Ratio for \(B^0\) and \(B^+\) Mesons
 ♦ Flavor Oscillations in \(B_d\) Mesons with Opposite Side Muon Tagging
 ♦ Observation of Semileptonic B decays to Narrow D** Mesons
 ♦ Samples of exclusive B decays
 ♦ Observation of X(3872) at DØ
 ♦ Sensitivity Analysis of Rare Bs\(\rightarrow\mu\mu\) Decays

• Key for DØ B-physics program:
 Successful combination of 3 main components
 ♦ Muon system
 ♦ Tracker
 ♦ Muon trigger
Tevatron vs. B factory

• Have higher b-quark production cross section
 ◆ Rates at typical lumi’s:
 ~10 Hz for B factory
 ~10 kHz for Tevatron
 < 1 kHz in detector eta/pt acceptance
 BUT: need to control background
 1) in trigger
 2) in analysis

• Tevatron produces all b-particle species
 ◆ Bs, Bc, b-baryons

• Tevatron does not have full energy constraint
 ◆ Pt though is conserved
• Muon system with coverage $|\eta|<2$ and good shielding

- **Trackers**
 - Silicon Tracker: $|\eta|<3$
 - Fiber Tracker: $|\eta|<2$

- **Magnetic field** 2T
Muon System

Andrei Nomerotski (Fermilab)

Muon PT in semileptonic events

Turn-on shape determined by muon triggers

Corresponds to muon P threshold:
- ~4.5 GeV/c in central region
- ~5 GeV/c in forward region

Interaction lengths VS. θ

η=1

η=2

Muons P_T in semileptonic events

Calorimeter

Toroid = magnetic iron
Triggers for B physics

- Robust and quiet single- and di-muon triggers
 - Large coverage $|\eta|<2$
 - Momentum measurement at L1 (toroids)
 - Variety of triggers based on
 - L1 Muon & L1 CTT (Fiber Tracker)
 - L2 & L3 filters

- Typical total rates at medium luminosity ($40 \times 10^{30} \text{s}^{-1}\text{cm}^{-2}$)
 - Di-muons: 50 Hz / 15 Hz / 4 Hz @ L1/L2/L3
 - Single muons: 120 Hz / 100 Hz / 50 Hz @ L1/L2/L3
 - Rates before prescaling: typically single muon triggers are prescaled or/and used with raised p_T threshold at L1
 - Muon purity @ L1: 90% - all charm/bottom decays
 - Current total trigger bandwidth
 - 1600 Hz / 800 Hz / 60 Hz @ L1/L2/L3

- B-physics semi-muonic yields are limited by L3 filters and L3 bandwidth
Muon Trigger Rates

- L1 Single and Di-Muon Trigger rates vs. luminosity

CTT helps to reduce the single muon trigger rate by ~3 for Pt>3 GeV/c

Single muon trigger is prescaled at high luminosities
Tracks are reconstructed starting from $p_T = 180$ MeV

Coverage of Muon system is matched by L3/offline tracking

Offline tracking code had a major breakthrough by summer 2003 – greatly improved performance compared to previous versions
• η acceptance determined by Fiber Tracker

• Statistics is decreased by 2.3 if cut |η|<1 applied to all particles

• Reconstruct B⁰ candidate (more later)
 • D⁰ : 2 tracks of opposite charge with $P_T > 0.7\,\text{GeV}$, |η|<2
 • D*
 • muon
Tracking Performance

Impact Parameter Resolution

- $\sigma(\text{DCA}) \approx 16 \, \mu\text{m} @ P_T = 10 \, \text{GeV}$
- $\sigma(\text{DCA}) \approx 54 \, \mu\text{m} @ P_T = 1 \, \text{GeV}$
- Resolution compares well with MC

NOT yet used for PID
Calibrations using J/ψ sample

Large J/ψ sample – currently 1.2 M events in 250 pb$^{-1}$

DfI Run II Preliminary

- $\sim 707k \ J/\psi$
- Mean = 3.0751 ± 0.0002 GeV
- $\sigma_{inner} = 58.1 \pm 0.5$ MeV

Mass resolution 60 MeV/c2 in agreement with expectations

- J/ψ mass is shifted by 22 MeV
- Observe dependence on P_t and on material crossed by tracks
- Developed correction procedure based on field & material model
- Finalizing calibration of momentum scale using J/ψ, K_s, D^0

Mass resolution 60 MeV/c2 in agreement with expectations

After magnetic field and material corrections

Before corrections

NOT yet used
• B\(^+\) and B\(^0\) lifetimes should be the same in naïve spectator model
• However there are differences at \(O(1/m_b^3)\) level explained by Weak Annihilation (for B\(^0\)) and Pauli Interference (for B\(^+\)) diagrams

• In general theory prefers to deal with ratios
• Recent progress in NLO Lattice QCD improved precision of theoretical prediction on the lifetime ratio

\[
\tau(B^+)/\tau(B^0) = 1.053 \pm 0.016 \pm 0.017 \ (m_B, V_{cb}, f_B)
\]

Motivates improvements in experimental accuracy
Theory Predictions vs Experiment

Lifetime ratio

<table>
<thead>
<tr>
<th>Expression</th>
<th>PDG 2003</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau(B^+)/\tau(B^0)$</td>
<td>1.085±0.017</td>
<td>1.03 - 1.07</td>
</tr>
<tr>
<td>$\tau(B_s)/\tau(B^0)$</td>
<td>0.951±0.038</td>
<td>0.99 - 1.01</td>
</tr>
<tr>
<td>$\tau(\Lambda_b)/\tau(B^0)$</td>
<td>0.8±0.052</td>
<td>0.9 - 1.0</td>
</tr>
<tr>
<td>$\tau(b\text{-baryon})/\tau(B^0)$</td>
<td>0.786±0.034</td>
<td>0.9 - 1.0</td>
</tr>
</tbody>
</table>

Graphs depicting predicted and experimental values for each ratio.
DZero Semileptonic B_d sample

- 109k $B \rightarrow \mu \nu D^0$ candidates
- 25k $B \rightarrow \mu \nu D^*$ candidates

$B \rightarrow \mu \nu D^0 X$

$\rightarrow K^+\pi$

Dominated by B^+ decays

Dominated by B^0 decays
Visible Proper Decay Length

- Determine distance between μD^0 vertex and primary vertex in transverse plane: L_T
- Determine transverse momentum of μD^0 system: $P_T(\mu D^0)$
- Calculate Visible Proper Decay Length:
 - $VPDL = \frac{L_T}{P_T(\mu D^0)} \cdot M_B$
Analysis: Novel Technique

Three important points:

1) **Measure directly ratio of lifetimes instead of measuring absolute lifetimes**
 - Group events into 8 bins of Visible Proper Decay Length (VPDL):

 \[
 \text{VPDL} = \frac{L_T}{p_T(\mu D^0)} \cdot M_B
 \]
 \[
 L_T = \text{transverse decay length}
 \]

2) **Measure** \(r = \frac{N(\mu D^*)}{N(\mu D^0)} \) **in each bin**
 - Number of events is extracted from the fit of mass peak
 \(\Rightarrow \) no need to know VPDL distribution for background

3) **If relative** \(D^*/D^0 \) **efficiency does not depend on VPDL it does not affect the lifetime ratio** =>
 - Reconstruct slow pion from \(D^* \) without biasing lifetime
D* Selections

- Only requirement on slow pion is to give correct $m(D^*) - m(D^0)$ value
- Slow pion is NOT used for calculation of VPDL
 NOT used in B-vertex
 NOT used in k-factors
D\(^0\) and D\(^*\) Samples

- **D\(^*\) sample:**
 - all identified D\(^*\) candidates

- **D\(^0\) sample:**
 - D\(^0\) candidates with removed D\(^*\) candidates
Ratio of D^0 and D^* events

one example: VPDL bin $[0.10 - 0.15 \text{ cm}]$

$$r_i = \frac{N_i(\mu^+D^* \pi^-)}{N_i(\mu^+D^0)} = \frac{N_i^R - C \cdot N_i^W}{N_i^0 + (1 + C') \cdot N_i^W}$$

- Fit D^0 mass peak in both cases in exactly same way
 - Decreases fit systematics
- Number of D^* events is corrected to account for combinatorial bkg
 - Estimated from wrong sign D^* combinations
 - Small correction because D^* S/B is good
- Number of D^0 events is corrected to account for genuine D^0's lost due to D^* window cut
 - Small correction as well

Fit function: Gaussian + 2nd order polynomial
Errors are statistical, derived from the fit of mass peaks

<table>
<thead>
<tr>
<th>i</th>
<th>VPDL range</th>
<th>N^R_i</th>
<th>N^W_i</th>
<th>$N^0_i + N^W_i$</th>
<th>r_i</th>
<th>r^e_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1 ÷ 0.0</td>
<td>1016 ± 39</td>
<td>43 ± 18</td>
<td>3175 ± 109</td>
<td>0.298 ± 0.018</td>
<td>0.325</td>
</tr>
<tr>
<td>2</td>
<td>0.0 ÷ 0.02</td>
<td>3482 ± 69</td>
<td>129 ± 22</td>
<td>9973 ± 162</td>
<td>0.328 ± 0.009</td>
<td>0.324</td>
</tr>
<tr>
<td>3</td>
<td>0.02 ÷ 0.04</td>
<td>3350 ± 67</td>
<td>111 ± 18</td>
<td>9850 ± 152</td>
<td>0.322 ± 0.009</td>
<td>0.318</td>
</tr>
<tr>
<td>4</td>
<td>0.04 ÷ 0.07</td>
<td>3593 ± 70</td>
<td>114 ± 18</td>
<td>10995 ± 155</td>
<td>0.310 ± 0.008</td>
<td>0.310</td>
</tr>
<tr>
<td>5</td>
<td>0.07 ÷ 0.10</td>
<td>2175 ± 55</td>
<td>75 ± 13</td>
<td>7144 ± 126</td>
<td>0.288 ± 0.010</td>
<td>0.301</td>
</tr>
<tr>
<td>6</td>
<td>0.10 ÷ 0.15</td>
<td>1932 ± 51</td>
<td>57 ± 13</td>
<td>6349 ± 120</td>
<td>0.290 ± 0.010</td>
<td>0.291</td>
</tr>
<tr>
<td>7</td>
<td>0.15 ÷ 0.25</td>
<td>1212 ± 42</td>
<td>36 ± 11</td>
<td>4189 ± 102</td>
<td>0.276 ± 0.013</td>
<td>0.274</td>
</tr>
<tr>
<td>8</td>
<td>0.25 ÷ 0.40</td>
<td>298 ± 21</td>
<td>5 ± 6</td>
<td>1022 ± 51</td>
<td>0.284 ± 0.027</td>
<td>0.252</td>
</tr>
</tbody>
</table>
Expected Ratio r^e_i

- To calculate expected ratio in each VPDL bin
 - Sort decay channels between D^0 and D^* samples
 - For given decay channel determine probability for B to have certain Visible Proper Decay Length taking into account:
 - Correct proper decay length by K-factor which takes into account not reconstructed particles
 - Resolution
 - Efficiency
 - Make a sum for each sample according to the branching rates
 - Integrate over the VPDL bin to get the number of events
 - Take the ratio
Fitting Procedure

\[k \equiv \tau^+/\tau^0 - 1 \text{ is determined from } \chi^2(N, k) \text{ minimisation:} \]
\[
\chi^2(N, k) = \sum_i \frac{(r_i - N \cdot r_i^e(k))^2}{\sigma^2(r_i)}
\]

- Norm \(N\) and \(k\) are free parameters in minimisation;
- \(\tau^+ = 1.674 \pm 0.018\) ps is taken from PDG;
- \(\tau^0 = \tau^+/ (1 + k)\);
- \(Br_j\) are taken from PDG;
- \(D_j(K), Res_j(x)\) are taken from simulation;
- \(Eff_{D^0}(x)\) is taken from simulation;
- \(Eff_{D^*}(x) = C \cdot Eff_{D^0}(x)\) - verified in simulation;
Semileptonic Sample Composition

For D^* sample:

- $B^0 \to D^+-\mu\nu$;
- $B^0 \to D^{*-}\mu\nu X$;
- $B^+ \to D^{*-}\mu\nu X$;
- $B^0_s \to D_{s}^{*-}\mu\nu X$;

For D^0 sample:

- $B^+ \to D^0\mu\nu$;
- $B^+ \to D^{*0}\mu\nu$;
- $B^+ \to D^{*-}\mu\nu X$;
- $B^+ \to D^{*0}\mu\nu X$;
- $B^0 \to D^{*-}\mu\nu X$;
- $B^0 \to D^{*0}\mu\nu X$;
- $B^0_s \to D_{s}^{*-}\mu\nu X$, $B^0_s \to D_{s}^{*0}\mu\nu X$;

Branching rates from PDG values for inclusive and exclusive measurements:

$$Br(B^+ \to \mu^+\nu D^0) = 2.15 \pm 0.22\%$$

$$Br(B^0 \to \mu^+\nu D^-) = 2.14 \pm 0.20\%$$

$$Br(B^+ \to \mu^+\nu \bar{D}^{*0}) = 6.5 \pm 0.5\%$$

$$Br(B^0 \to \mu^+\nu \bar{D}^{-}) = 5.53 \pm 0.23\%$$

$$Br(B^+ \to \mu^+\nu \bar{D}^{**0}) = 2.67 \pm 0.37\%$$

$$Br(B^+ \to \mu^+\nu \bar{D}^{**0} \to l^+\nu D^{-} X) = 1.07 \pm 0.25\%$$

Important: D^* decays dominate both D^0 and D^* samples.
Sample Composition

- Based on above and after corrections for reconstruction efficiency

- D^* sample is composed of
 - $86\% B^0$
 - $12\% B^+$
 - $2\% B_s$

- D^0 sample is composed of
 - $82\% B^+$
 - $16\% B^0$
 - $2\% B_s$
K-factors

- K-factor accounts for missing decay products like neutrino in calculation of proper lifetime
- We always compute k-factors as: \(K = \frac{P_T(\mu D^0)}{P_T(B)} \) even for D*+ sample
 - Same K-factor for D*+ and D*0
 - Reduce systematic error
- K-factors are grouped into 4 categories
VPDL Resolution

- Determined from MC
 - Described by 3 Gaussians
- Ratio fitting procedure assumes resolution is the same for D^0 and D^*
 - We do not use slow pion for B-vertex
- Resolution and tails of resolution were varied in wide range to study systematics due to resolution effects
 - Not so important for B_d studies

3 Gaussians
- $\sigma_1 = 22.2 \, \mu m \, - \, 28\%$
- $\sigma_2 = 47.3 \, \mu m \, - \, 57\%$
- $\sigma_3 = 131 \, \mu m \, - \, 15\%$
Slow pion efficiency

- **Key point:** Want to avoid lifetime bias
- **Eff** depends on \(P_T(D^0) \) because of tracking cutoff at \(P_T=0.18 \) GeV
 - May induce VPDL dependence
 - Cut at \(P_T(D^0) > 5 \) GeV/c
- After that \(Eff = 88\% \) and does not depend on VPDL in MC
- Error on possible slope was used to estimate systematics
- Investigating ways to double check it in data
τ(B+)/τ(B₀): Checks for slow pion efficiency

- Do not see dependence in MC on
 - Charged jet multiplicity
 - Axial impact parameter
$\tau(B^+)/\tau(B^0)$: Result

Preliminary result:

$\tau(B^+)/\tau(B^0) = 1.093 \pm 0.021 \text{ (stat)} \pm 0.022 \text{ (syst)}$

$N = 1.001 \pm 0.012$
Systematic errors

<table>
<thead>
<tr>
<th>source</th>
<th>variation range</th>
<th>$\Delta(\tau^+/\tau^0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Br(B^\rightarrow \mu^+\nu D^{*-})$</td>
<td>$5.53 \pm 0.23%$</td>
<td>0.0015</td>
</tr>
<tr>
<td>$Br(B^+ \rightarrow \mu^+\nu D^{*0})$</td>
<td>$6.50 \pm 0.5%$</td>
<td>0.0001</td>
</tr>
<tr>
<td>$Br(B^+ \rightarrow \mu^+\nu D^{*0})$</td>
<td>$2.67 \pm 0.37%$</td>
<td>0.0005</td>
</tr>
<tr>
<td>$Br(B^+ \rightarrow \mu^+\nu D^{*-}\pi^+X)$</td>
<td>$1.06 \pm 0.25%$</td>
<td>0.0074</td>
</tr>
<tr>
<td>$Br(B_s^0 \rightarrow \mu^+\nu D_s X)$</td>
<td>$7.9 \pm 2.4%$</td>
<td>0.0025</td>
</tr>
<tr>
<td>R_{ss}, see (11)</td>
<td>$0 \div 1$</td>
<td>0.0007</td>
</tr>
<tr>
<td>$Eff(x; B^+ \rightarrow \mu^+\nu D^{*0})$</td>
<td>set $Eff(x) = const$</td>
<td>0.0012</td>
</tr>
<tr>
<td>$Eff(\pi)$</td>
<td>0.876 ± 0.04</td>
<td>0.0012</td>
</tr>
<tr>
<td>Time dependence of $Eff(x; \pi)$</td>
<td>slope $\pm 0.12 ,[1/cm]$</td>
<td>0.0132</td>
</tr>
<tr>
<td>C_Y</td>
<td>$C_Y = 1$</td>
<td>0.0086</td>
</tr>
<tr>
<td>VPDL resolution difference in resolution between D^* and D^0</td>
<td>MC resolution $\times (0.2 \div 4.0)$</td>
<td>0.0042</td>
</tr>
<tr>
<td>K-factors</td>
<td>$r_1^e \rightarrow r_1$</td>
<td>0.0060</td>
</tr>
<tr>
<td>Average value $\pm 2%$</td>
<td></td>
<td>0.0021</td>
</tr>
<tr>
<td>K-factors</td>
<td>$Z(K; D^{**}) = Z(K; D^0, D^*)$</td>
<td>0.0072</td>
</tr>
<tr>
<td>Fitting procedure</td>
<td>see section 10</td>
<td>0.0060</td>
</tr>
<tr>
<td>C from eqn. (2)</td>
<td>1.22 ± 0.04</td>
<td>0.0004</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.0215</td>
</tr>
</tbody>
</table>

- Work in progress to understand (and hopefully decrease) main contributors
Andrei Nomerotski (Fermilab)

$\tau(B^+)/\tau(B^0)$: Consistency Checks

- Split data sample in two parts with respect to various parameters – all looks good

<table>
<thead>
<tr>
<th>Consistency test</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Z_{PV}</td>
</tr>
<tr>
<td>$</td>
<td>Z_{PV}</td>
</tr>
<tr>
<td>$\eta(\muon) > 0$</td>
<td>0.107 ± 0.031</td>
</tr>
<tr>
<td>$\eta(\muon) < 0$</td>
<td>0.079 ± 0.030</td>
</tr>
<tr>
<td>$p_T(D^0) < 7.5$ GeV/c</td>
<td>0.105 ± 0.031</td>
</tr>
<tr>
<td>$p_T(D^0) > 7.5$ GeV/c</td>
<td>0.083 ± 0.030</td>
</tr>
<tr>
<td>μ^+ only</td>
<td>0.088 ± 0.030</td>
</tr>
<tr>
<td>μ^- only</td>
<td>0.111 ± 0.031</td>
</tr>
<tr>
<td>$p_T(\mu) < 5.5$ GeV/c</td>
<td>0.104 ± 0.033</td>
</tr>
<tr>
<td>$p_T(\mu) > 5.5$ GeV/c</td>
<td>0.083 ± 0.028</td>
</tr>
<tr>
<td>Different intervals</td>
<td>0.086 ± 0.021</td>
</tr>
<tr>
<td>Without last VPDL interval</td>
<td>0.107 ± 0.024</td>
</tr>
<tr>
<td>Additional VPDL interval 0.4-0.8 cm</td>
<td>0.092 ± 0.021</td>
</tr>
</tbody>
</table>

- Invert magnetic field (statistics splits 50/50)
 - Positive polarity:
 - $k=0.072±0.030$
 - Negative polarity:
 - $k=0.115±0.030$

- Rare possibility at detectors for B-physics – not very important here but important for CP studies

- Measured ratio in MC = 0.073 ± 0.030 (input 0.070)
Revisiting Slow Pion Efficiency

- Checked in data using $K_s \rightarrow \pi^+ \pi^-$ sample
 - Measured K_s lifetime agrees with PGD - will allow to reduce this systematics

Note regeneration in beampipe and silicon layers
Andrei Nomerotski (Fermilab)

\[\frac{\tau(B^+)/\tau(B^0)}{\tau(B^+)/\tau(B^0)}: \text{Comparison with other experiments} \]

This is one of the most precise measurements to date

New DØ result
(average not updated, plot not official or approved by HFAG)
B⁰/B̅⁰ mixing

- **In SM B_d mixing is explained by box diagrams**
 - Constrains V_{td} CKM matrix element
 - Mixing frequency Δm_d has been measured with high precision at B factories (0.502 ± 0.007 ps⁻¹)

- **We use our large sample of semileptonic B_d decays to measure Δm_d**
 - Benchmark the initial state flavor tagging for later use in B_s and Δm_s measurements
 - Can also constrain more exotic models of b production at hadron colliders
Initial State Tagging

- **B flavor tagging methods:**
 - Opposite Side Lepton Tag
 - High Dilution: $D=0.5$
 - Low Efficiency: $\varepsilon=0.05$
 - Jet Charge Tag
 - Moderate Dilution: $D=0.1-0.3$
 - Moderate Efficiency: $\varepsilon=0.5$
 - Same Side Tag
 - Low Dilution: $D=0.1-0.2$
 - High Efficiency: $\varepsilon=0.7-0.8$

- **Significance of mixing measurement:** $S \propto \varepsilon D^2$

- The methods can be combined
OS muon tagging

✓ For tag optimization used
 ➢ Semileptonic B⁺ sample
 ➢ B⁺ → J/ψ K⁺ sample

✓ Adopted the following tagging procedure
 ➢ Select certified muons
 ▪ Track with # SMT hits > 1, # CFT hits > 1
 ▪ Pt > 2.5 GeV
 ▪ Nseg = 2 or 3
 ▪ Not from the same jet as B candidate
 ▪ cos (ϕ angle between B and tag muon) < 0.5
 ▪ Not from J/ψ

 ➢ If more than one candidate-choose muon with max Pt
 ➢ Not oscillated: $Q_{μ_0} \cdot Q_{μ} < 0$; oscillated: $Q_{μ_0} \cdot Q_{μ} > 0$
Number of events in different bins of Visible Proper Decay Length

- **First bin VPDL = [0.0 - 0.025 cm] or [0 - 0.83 ps]**
 - D* signal
 - **non-osc**
 - 146 D*
 - **osc**
 - 58 D*

- **Last bin VPDL = [0.125 - 0.250 cm] or [4.17 - 8.33 ps]**
 - D* signal
 - **non-osc**
 - 64 D*
 - **osc**
 - 80 D*
Oscillations in D^* and D^0 samples

- Expect to see oscillations
- Level is offset by B^+ contribution

- Expect to see no oscillations
- Some variation from oscillations due to B^0 contribution into sample composition

Andrei Nomerotski (Fermilab)
\[\Delta m_d = 0.506 \pm 0.055 \text{(stat)} \pm 0.049 \text{(syst)} \text{ ps}^{-1} \]

Tagging efficiency: 4.8 +/- 0.2 \%
Tagging purity: 73.0 +/- 2.1 \%

Systematic error dominated by signal shape fitting - will be improved
B_d mixing with Same Side Tagging

- **B^+:**
 - Correct tag: \(Q_t \cdot Q_\mu < 0 \)

- **B^0:**
 - Correct tag: \(Q_t \cdot Q_\mu > 0 \)

Tagging track:

- Lowest \(P_{t,rel} \) track wrt B-meson in \(\Delta R < 0.7 \) cone around B
 - Used by CDF in Run I
 - Other algorithms are being considered also
D** contribution

- Difficulties arise due to D** contribution
 - Charged pion from D** can be taken as a tag
- Evaluated from D** topological analysis
 - Use impact parameter of pion from D** → D*π
Oscillations with Same Side Tagging

DØ RunII Preliminary

✓ No oscillations in the D⁰ sample
✓ There are oscillations in the D⁺ sample

• Work in progress to measure Δm
BS mixing

- BS oscillation frequency is more than 30 times higher than for Bd
- Semileptonic channels: Ability to measure the ΔmS deteriorates due to smearing of proper time because of neutrino
 - Try to find ways to improve resolution and evaluate K-factor on event by event basis

- Hadronic channels: No smearing due to neutrino
BS mixing

- Semileptonic channels: only a few periods are visible due to smearing from neutrino
 - Try to find ways to improve resolution and evaluate K-factor on event by event basis
B_s semileptonic decays

\[B_s \rightarrow \mu^+ \nu \ D_s \rightarrow \phi \, \pi^- \rightarrow K^+ K^- \]

- Excellent yield:
 - 9500 candidates in 250 pb\(^{-1}\)
- \(\phi \pi \) invariant mass plot:
 - some lifetime cuts applied

Work in progress to measure
- \(B_s/B_d \) lifetime ratio
- first results on \(B_s \) mixing
 - need to fully understand time resolution
 - if \(\Delta m_s \approx 15 \, \text{ps}^{-1} \) expect a measurement with 500 pb\(^{-1}\)
Oscillated B_s candidate in Run 164082 Event 31337864

- OS muon tagging was used for semileptonic B_s sample
- An example of tagged B_s candidate is shown
 - Two same sign muons are detected
 - Tagging muon has $\eta=1.4$
 - See advantage of muon system with large coverage
 - $M_{KK}=1.019$ GeV, $M_{KK\pi}=1.94$ GeV
 - $P_T(\mu_{Bs})=3.4$ GeV; $P_T(\mu_{tag})=3.5$ GeV
Hadronic Bs at DZero

Idea: Trigger on opposite side muon - access to fully reconstructed B_s / B_d hadronic decays
- Poor statistics (but remember that OS muon tagging comes for free!)
- Excellent proper time resolution
- Observed preliminary B_d signal but a lot of work is still needed
- Strong competition from CDF which can trigger directly on this mode (without muon requirement)

First hadronic $B_d \rightarrow D^* \pi$ signal with OS muon tag (250 pb$^{-1}$)
Bs mixing projections

- Proposal to increase L3 bandwidth from 50 to 100 Hz is being reviewed
 - Upgrade to 250 Hz under discussion
- Silicon upgrade (Layer0) is going ahead (see later)
Observation of $B \rightarrow \mu \nu D^{**} X$

- **D^{**}** are orbitally excited D meson states, see diagram
- In heavy quark limit expect two sets of doublet states
 - Two broad
 - Two narrow
- **Narrow D^{**}**
 - $D_{1}^{0}(2420) \rightarrow D^{*+} \pi^{-}$
 - $D^{*0}_{2}(2460) \rightarrow D^{*+} \pi^{-}$
 ▲ One of decay channels

D_{1}^{0}, D_{2}^{*0} have been observed and studied in several experiments, most recently by BaBar and Belle in $B^{-} \rightarrow D^{**0} \pi^{-}$

We study D_{1}^{0}, D_{2}^{*0} produced in semileptonic B decays.
D** Signal

- Take D* sample - add another pion
- Look at invariant mass of D*⁻ π⁺ system
- Observed merged D₁⁰(2420) and D₂*⁰(2460)

![Graph showing D** invariant mass distribution with B → μ ν (D₁⁰, D₂*⁰) X → μ ν D*⁻ π⁺ X. 250 pb⁻¹, 523 ± 40 candidates.](image)
Interference effects in D**

- Two D** resonances decay to same final state => must interfere
- Modelled with two interfering Breit-Wigner states with mass/width as measured by Belle (no resolution effects included)

- Work in progress: extract separate amplitude for each state and relative phase of interference
Measurement of Br

- Experimentally determine total # of events in two narrow peaks
- Measure Br of $B \rightarrow \mu \nu$ narrow $D^{**} X$
 - Normalize to known Br ($B \rightarrow D^{*+} \mu \nu X$)

$$\text{Br}(B \rightarrow \{D_1^0, D_2^{*0}\} \mu \nu X) \cdot \text{Br}([D_1^0, D_2^{*0}] \rightarrow D^{*+} \pi^-) = 0.280 \pm 0.021 \text{ (stat)} \pm 0.088 \text{ (syst)} \%$$

- Can be compared to LEP measurement of total D^{**} Br
 $$Br(B \rightarrow D^{**}\pi^-\mu\nu X) = (0.48 \pm 0.10)\%$$
 - More than half of the rate goes through narrow states
Exclusive B Decays

- Accumulated large exclusive samples of B^+ and B^0

 Find in 250 pb$^{-1}$:
 - $B^+ \rightarrow J/\psi K^+$ 4300 events
 - $B^0 \rightarrow J/\psi K^*$ 1900 events
 - $B^0 \rightarrow J/\psi K_s$ 375 events

- $\Lambda_b \rightarrow J/\psi \Lambda$ 52 events

 - Good S/B
 - Lifetime cuts applied
Exclusive B_s Sample

$D\bar{O}$ accumulated the world largest sample of exclusive $B_s \rightarrow J/\psi \phi (\rightarrow K^+K^-)$ decays

- Some lifetime cuts applied

$B_s^0 \rightarrow J/\psi + \phi$

$N = 403 \pm 28$

- We have good potential in all $B \rightarrow J/\psi$ exclusive modes, work in progress on
 - Lifetime measurement of different B species
 - Studies of CP effects in B_s & B_d mesons
Last summer, Belle announced a new particle at \(\cong 3872 \text{ MeV/c}^2 \), observed in \(B^+ \) decays:

\[
B^+ \rightarrow K^+ X(3872), \quad X(3872) \rightarrow J/\Psi \pi^+ \pi^-
\]

Belle’s discovery has been confirmed by CDF and DØ.

DØ preliminary:

- \(300 \pm 61 \) events
- \(4.4\sigma \) effect

\[
\Delta M = 0.768 \pm 0.004 \text{ (stat)} \pm 0.004 \text{ (syst)} \text{ GeV/c}^2
\]
$B_s \rightarrow \mu^+ \mu^-$ sensitivity study

$B_s \rightarrow \mu^+ \mu^-$ is a promising window on possible physics beyond the SM.

Expected SM branching ratio is small:

\[\text{Br}(B_s \rightarrow \mu^+ \mu^-) = (3.4 \pm 0.5) \cdot 10^{-9} \]

$B_d \rightarrow \mu^+ \mu^-$ is suppressed by additional factor $|V_{td}/V_{ts}| \approx 4 \cdot 10^{-2}$

SUSY: at large $\tan \beta$ enhancement of up to 2-3 orders of magnitude

Dimuon invariant mass, GeV/c2
$B_s \rightarrow \mu^+ \mu^-$ sensitivity study

- Optimisation based on mass sidebands using decay length, isolation and angle between muon and decay length direction
- Expected signal has been normalised to $B^\pm \rightarrow J/\Psi K^\pm$
- After final cuts
 - expect 7.3 background events in signal region
 - signal efficiency: 30%

Current expected limit:

$\text{Br}(B_s \rightarrow \mu^+ \mu^-) < 1.0 \cdot 10^{-6}$ @ 95% CL (stat + syst)

Have sensitivity for competitive measurement
Silicon Upgrade in 2005

- Install additional silicon layer (Layer0) close to beampipe during 2005 shutdown
- It must fit between radii of 16mm - beam pipe flange and 22.8mm - present silicon support structure openings - **6.8 mm gap**!
 - Six phi segments
 - Eight z segments 2x7, 2x12cm
 - Analog cables - low mass
 - 48 HDIs x 256 channels
 - 96 SVX4 chips
- Sensor pitch - 71 μm (inner), 81 μm (outer)
 - Phi acceptance 98.4%
 - Pitch adapter between sensor and analog cable
- Status : Production phase
Layer 0 Layout

Inside SMT: size of golf ball
Occupied presently by beampipe
Layer0 performance

- Recover deterioration due to radiation damage of inner layers and SMT readout failures
- Improve Impact Parameter resolution, especially at low momentum due to analog cables
Summary

- B-physics at DZero is online with world class results
 - Lifetime ratio
- Record semileptonic and exclusive B-samples
 - Great potential still to be explored
- Plan to upgrade silicon and write more to tape
 - Better IP resolution with Layer0
 - 100 Hz or higher rate to tape

Bs oscillations is highest priority topic – it appears close but it will be a long way
Status

- Good performance of Accelerator Division in 2004
- DØ recorded >100 pb⁻¹ in 2004
Daily Efficiency

19 April 2002 - 3 June 2004

Tevatron Shutdown
8 Sep - 21 Nov 2003

Daily Efficiency
△ 10 Day Average
Fitting Procedure

✓ Need expression for expected asymmetry
 ▪ Use exactly the same approach as in the lifetime ratio analysis
✓ First sort out how different B meson species behave wrt oscillation/tagging
 ▷ Bd tagged as oscillated
 \[n_d^+ = \frac{K}{c \tau_{B_d}} \exp\left(-\frac{Kx}{c \tau_{B_d}}\right) \cdot 0.5 \cdot \left(1 + (2\eta - 1) \cos(\Delta m \cdot Kx / c)\right) \]
 ▷ Bd tagged as non-oscillated
 \[n_d^- = \frac{K}{c \tau_{B_d}} \exp\left(-\frac{Kx}{c \tau_{B_d}}\right) \cdot 0.5 \cdot \left(1 - (2\eta - 1) \cos(\Delta m \cdot Kx / c)\right) \]
 ▪ Bd oscillates with frequency \(\Delta m \)
 ▪ \(x \) is VPDL
 ▪ \(\eta \) is tagging purity = fraction of correctly tagged events / total
Systematics for the mixing

<table>
<thead>
<tr>
<th>Source</th>
<th>$\sigma_{\Delta m}^{\text{syst}}, \text{ps}^{-1}$</th>
<th>$\sigma_\eta^{\text{syst}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Br}(B_d \to D^*-\mu^+\nu)$</td>
<td>0.003</td>
<td>0.0006</td>
</tr>
<tr>
<td>$\text{Br}(B \to D^*\pi\mu\nu X)$</td>
<td>0.009</td>
<td>0.0002</td>
</tr>
<tr>
<td>$\text{Br}(B_s \to D_s\mu^+\nu X)$</td>
<td>0.001</td>
<td>0.0040</td>
</tr>
<tr>
<td>B lifetime</td>
<td>0.004</td>
<td>0.0020</td>
</tr>
<tr>
<td>Resolution function</td>
<td>0.017</td>
<td>0.0040</td>
</tr>
<tr>
<td>Alignment</td>
<td>0.007</td>
<td>0.0040</td>
</tr>
<tr>
<td>K-factor</td>
<td>0.009</td>
<td>0.0004</td>
</tr>
<tr>
<td>Mass peak fitting procedure</td>
<td>0.041</td>
<td>0.0020</td>
</tr>
<tr>
<td>Total</td>
<td>0.049</td>
<td>0.0083</td>
</tr>
</tbody>
</table>
• D** selections
 ◆ Additional pion
 ▲ $P_T > 0.3$ GeV/c
 ▲ Right charge correlation
 ▲ IP significance wrt PV / IP significance wrt D** vtx > 4

• B selections
 ◆ # CFT hits > 5 for all tracks
 ◆ Good B vertex ($\chi^2 < 25$)
 ▲ Made of all D** tracks and muon
 ◆ Lifetime cuts
 ▲ Lxy significance > 3
Systematic errors

- Considered the following systematic effects

<table>
<thead>
<tr>
<th>Source</th>
<th>\mathcal{B}_τ absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^* branching rates</td>
<td>0.020%</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.023%</td>
</tr>
<tr>
<td>Normalization to D^*/D^0</td>
<td>0.023%</td>
</tr>
<tr>
<td>P_t^{**} dependence</td>
<td>0.052%</td>
</tr>
<tr>
<td>Possible contribution from wide resonance</td>
<td>0.039%</td>
</tr>
<tr>
<td>Possible interference effects of D^0_1 and D^0_2</td>
<td>0.040%</td>
</tr>
<tr>
<td>Different modelling of D^* fit</td>
<td>0.010%</td>
</tr>
<tr>
<td>Trigger bias</td>
<td>0.020%</td>
</tr>
<tr>
<td>Total systematic error</td>
<td>0.088%</td>
</tr>
</tbody>
</table>

- Can hope to decrease the main contributors in the future
Exclusive B decays

$\Lambda_b \rightarrow J/\psi + \Lambda$

$N = 52 \pm 13$

$B^d_0 \rightarrow J/\psi + K^*$

$N = 1857 \pm 72$