RELEVANT RESULTS FROM THE NA48 EXPERIMENT

E. Imbergamo
Department of Physics, University of Perugia, Italy
M. Piccini
Department of Physics, University of Perugia, Italy
M.C. Petrucci
INFN, section of Perugia, Italy

ABSTRACT

We report relevant results from NA48 experiment at CERN SPS. NA48 was proposed in 1990 [1] to study direct CP violation in $K^0 \rightarrow \pi\pi$ to a level of accuracy sufficient to resolve the inconclusive status left by the previous measurements performed by NA31 [2] and E731 [3]. In 2002 NA48 published the final result [4]. Small modification to the experimental setup have allowed NA48 to go forward with an extensive investigation of K^0 rare decays and hyperon decays. Some results are already available and reported here together with the final CP violation measurement.

1 The measurement of $Re(\epsilon'/\epsilon)$

It is well known that the decay of $K^0/\bar{K^0}$ into two pions violates CP. Such a violation can have two contributions: one, indirect, associated to $K^0/\bar{K^0}$ mixing and another, direct, coming from the decay amplitude. The amount of direct CP violation in this decay is parametrized by the parameter $Re(\epsilon'/\epsilon)$, which can be computed in the framework of the standard electro-weak-model, albeit with large theoretical uncertainties. Typical theoretical predictions of $Re(\epsilon'/\epsilon)$ varies from few 10^{-4} to about 2×10^{-3}, even though with large exceptions.

$Re(\epsilon'/\epsilon)$ is connected to the double ratio of decay rates according to the following formula:

$$R = \frac{\Gamma(K_L \rightarrow \pi^0\pi^0)}{\Gamma(K_S \rightarrow \pi^0\pi^0)} \times \frac{\Gamma(K_L \rightarrow \pi^+\pi^-)}{\Gamma(K_S \rightarrow \pi^+\pi^-)} \approx 1 - 6 \cdot Re(\epsilon'/\epsilon) \tag{1}$$
In order to exploit the cancellation in the double ratio of systematic uncertainties, the experimental apparatus consists of two concurrent and almost co-linear beams, one providing the experiment with K_L decays and the other one with K_S decays and the K^0 to $\pi\pi$ decays are reconstructed in the same decay region. A tagging station is devoted to identify the K^0 decay as a K_S or a K_L decay. In 2002 NA48 has published \cite{4} the final result of the measurement:

$$Re(\epsilon'/\epsilon) = (15.3 \pm 2.6) \times 10^{-4}$$

(2)

It is the most precise measurement ever done as shown in Fig.1. The world average value is also reported together with the uncertainty (yellow band).

2 Selected items about rare decays

The radiative kaon decays are ideally suited to test the validity of the Chiral Perturbation Theory (χPhT). The processes may be described in a perturbative expansion of momenta: $O(p^2), O(p^4)$. Examples of this type are $K_S \to \gamma\gamma$ and $K_L \to \pi^0\gamma\gamma$. In both cases there is no contribution from the $O(p^2)$ term, while the $O(p^4)$ contribution is predicted to better than 5% by χPhT. NA48 has measured $[5],[6]$:

$$BR(K_S \to \gamma\gamma) = (2.78 \pm 0.06_{\text{stat}} \pm 0.02_{M\text{Cstat}} \pm 0.04_{\text{syst}}) \times 10^{-6}$$

(3)
\[BR(K_L \to \pi^0\gamma\gamma) = (1.36 \pm 0.03_{\text{stat}} \pm 0.03_{\text{syst}} \pm 0.03_{\text{norm}}) \times 10^{-6} \]

The value of \(BR(K_S \to \gamma\gamma) \) deviates from \(\mathcal{O}(p^4) \) prediction and indicates a large \(\mathcal{O}(p^6) \) contribution. The \(\mathcal{O}(p^4) \) contribution to \(K_L \to \pi^0\gamma\gamma \) turns out to be also an underestimation of the decay rate. Anyway at \(\mathcal{O}(p^6) \) the rate may be reproduced by adding a contribution from the VDM mechanism, via the coupling constant \(a_v \) that NA48 has measured to be:

\[a_v = -0.46 \pm 0.03_{\text{stat}} \pm 0.04_{\text{syst}} \]

\[3 \quad \text{Hyperon decays in NA48} \]

The target used for the production of 1\(\text{K}^0 \)s is also a huge source of hyperons. By using the small fraction of hyperons that passed the standard triggers in the previous years, the NA48 collaboration has already published results on hyperon physics [7]:

\[m(\Xi^0) = [1314.82 \pm 0.06(\text{stat.}) \pm 0.20(\text{syst.})] \text{MeV/c}^2 \]

\[BR(\Xi^0 \to \Lambda\gamma) = [1.90 \pm 0.34(\text{stat.}) \pm 0.19(\text{syst.})] \times 10^{-3} \]

\[BR(\Xi^0 \to \Sigma^0\gamma) = [3.14 \pm 0.76(\text{stat.}) \pm 0.32(\text{syst.})] \times 10^{-3} \]

In the 2002 special triggers have been dedicated to hyperon decays and NA48 claims main achievements to:

1. study form factors and flavor symmetry violations in the \(\Xi^0 \) decays;
2. give an alternative measurement of \(V_{us} \) (CKM parameter) using \(\Xi^0 \) (and \(\Lambda \)) beta decay instead of kaon beta decays.

References