Multi-Soliton Solutions with Discrete Symmetries in the Chiral Quark Soliton Model

Nobuyuki SAWADO, Noriko SHIIKI and Shinsho ORYU

Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
E-mail: sawado@ph.noda.tus.ac.jp, norikoshiiki@mail.goo.ne.jp, oryu@ph.noda.tus.ac.jp

We discuss multi-soliton solutions with discrete symmetries in the chiral quark soliton model using the rational map ansatz. The solutions exhibit degenerate bound spectra of the quark orbits depending on the background pion field configurations. It is shown that resultant baryon densities inherit the same discrete symmetries as the chiral fields. Evaluating the radial component of the baryon density, shell-like structure of the valence quark spectra is also observed.

1 Introduction

The chiral quark soliton model (CQSM) was developed in 1980’s as a low-energy effective theory of QCD. Since it includes the Dirac Sea quark contribution and explicit valence quark degrees of freedom, the model interpolates between the constituent quark model and the Skyrme model [1–4]. The CQSM is derived from the instanton liquid model of QCD vacuum and incorporates the non-perturbative feature of the low-energy QCD, spontaneous chiral symmetry breaking. It has been shown that the $B = 1$ solution provides correct observables such as a nucleon including mass, electromagnetic value, spin carried by quarks, parton distributions and octet SU(3) baryon spectra. For $B = 2$, the stable axially symmetric soliton solution was found in [5]. The solution exhibits doubly degenerate bound spectrum of the quark orbits in the background of axially symmetric chiral fields with winding number two. Upon quantization, various dibaryon spectra were obtained, showing that the quantum number of the ground state coincide with that of physical deuteron [6,7]. For $B > 2$, the Skyrme model predicts that minimum energy solutions have only discrete, crystal-like symmetries [8–10]. According to this prediction, we studied the CQSM with $B = 3$ tetrahedrally symmetric chiral fields and obtained triply degenerate spectrum of the quark orbits [11]. Its large degeneracy indicates that the tetrahedrally symmetric solution may be the lowest-lying configuration. Thus, for $B > 3$, one can also expect that the lowest-lying solutions in the CQSM inherits the discrete symmetries predicted in the Skyrme model.

Following the $B = 3$ case, we shall study soliton solutions with $B \geq 3$ in the CQSM using the rational map ansatz with discrete symmetries obtained in the Skyrme model. We will show obtained classical self-consistent soliton solutions with $B = 1–9, 17$. These solutions exhibit various degenerate spectra of the quark orbits depending on the symmetry of the background chiral fields. Such degeneracy generates large shell gaps, which suggests that the solutions are stable local minima. It is shown that resultant baryon number densities inherit the same symmetries as the chiral fields. Evaluating the radial component of the baryon density, shell-like structure of the valence quarks can be observed.

2 The model

The CQSM is derived from the instanton liquid model of the QCD vacuum and incorporates the nonperturbative feature of the low-energy QCD, spontaneous chiral symmetry breaking. The
The vacuum functional is defined by [1]

\[
Z = \int D\pi D\psi D\bar{\psi} \exp \left[i \int d^4x \bar{\psi} \left(i\partial - MU^\gamma_5 \right) \psi \right],
\]

(1)

where the SU(2) matrix

\[
U^\gamma_5 = \frac{1 + \gamma_5}{2} U + \frac{1 - \gamma_5}{2} U^\dagger
\]

with \(U = \exp \left(i \tau \cdot \pi / f_\pi \right) \)
describes chiral fields, \(\psi \) is quark fields and \(M \) is the constituent quark mass. \(f_\pi \) is the pion decay constant and experimentally \(f_\pi \sim 93 \text{ MeV} \).

In the CQSM, the number of valence quark is associated with the baryon number such that a soliton with baryon number \(B \) consists of \(N_c \times B \) valence quarks. If the correlation between quarks is sufficiently strong, their binding energy becomes large and the valence quarks cannot be observed as positive energy particles [12, 13]. Thus, one gets the picture of the topological soliton model in the sense that the baryon number coincides with the winding number of the background chiral field when the valence quarks occupy all the levels diving into negative energy region.

The vacuum functional in (1) can be integrated over the quark fields to obtain the effective action

\[
S_{\text{eff}}[U] = -i N_c \ln \det \left(i\partial - MU^\gamma_5 \right)
\]

(2)

\[
= -\frac{i}{2} N_c \text{Sp} (D^\dagger D),
\]

(3)

where \(D = i\partial - MU^\gamma_5 \). We introduce the eigenfunction

\[
H(U^\gamma_5)\phi_\mu(x) = E_\mu \phi_\mu(x), \quad H(U^\gamma_5) = -i\alpha \cdot \nabla + \beta MU^\gamma_5.
\]

(4)

The effective action \(S_{\text{eff}}(U) \) is ultraviolet divergent and hence must be regularized. Using the proper-time regularization scheme [14], we can write

\[
S_{\text{eff}}^{\text{reg}}[U] = \frac{i}{2} N_c \int_{1/\Lambda^2}^{\infty} \frac{d\tau}{\tau} \text{Sp} \left(e^{-D^\dagger D\tau} - e^{-D^\dagger_0 D_0 \tau} \right)
\]

\[
= \frac{i}{2} N_c T \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \int_{1/\Lambda^2}^{\infty} \frac{d\tau}{\tau} \text{Sp} \left[e^{-\tau (H^2 + \omega^2)} - e^{-\tau (H^2_0 + \omega^2)} \right],
\]

(5)

where \(T \) is the Euclidean time separation, \(D_0 \) and \(H_0 \) are operators with \(U = 1 \).

At \(T \to \infty \), we have \(e^{iS_{\text{eff}}} \sim e^{-iE_{\text{field}}T} \). The total energy then is given by

\[
E_{\text{static}}[U] = E_{\text{val}}[U] + E_{\text{field}}[U] - E_{\text{field}}[U = 1],
\]

(6)

where

\[
E_{\text{val}} = N_c \sum_i E_{\text{val}}^{(i)}
\]

(7)

is the valence quark contribution with the valence energy of the \(i \)-th valence quark \(E_{\text{val}}^{(i)} \), and the vacuum part is

\[
E_{\text{field}} = N_c \sum_\mu \left\{ N(E_\mu) |E_\mu| + \frac{\Lambda}{\sqrt{4\pi}} \exp \left[-\left(\frac{E_\mu}{\Lambda} \right)^2 \right] \right\}
\]
Multi-Soliton Solutions in the Chiral Quark Soliton Model

with

\[N(E_\mu) = -\frac{1}{\sqrt{4\pi}} \Gamma \left(\frac{1}{2}, \left(\frac{E_\mu}{\Lambda} \right)^2 \right). \]

Λ is a cutoff parameter evaluated by the condition that the derivative expansion of (5) reproduces the pion kinetic term with the correct coefficient, i.e.,

\[f_\pi^2 = \frac{N_c M^2}{4\pi^2} \int_{1/\Lambda^2}^\infty \frac{d\tau}{\tau} e^{-\tau M^2}. \] (8)

The constituent quark mass \(M \) is only one free parameter and we adopt the value \(M = 400 \) MeV, which reproduces the observables of the nucleon and the delta. From (8), one obtains \(\Lambda \sim 637 \) MeV. The contribution for the total energy in the absence of the chiral fields (\(U = 1 \)) can be estimated using the eigenstates of eigenequation,

\[H_0 \phi_\mu^{(0)}(x) = E_\mu^{(0)} \phi_\mu^{(0)}(x), \quad H_0 = -i\alpha \cdot \nabla + \beta M. \] (9)

In the Skyrme model, it is known that solitons with \(B \geq 3 \) have particular discrete symmetries [8]. Therefore, we expect that soliton solutions of the CQSM inherit the same discrete symmetry as skyrmions. Houghton, Manton and Sutcliffe proposed remarkable ansatz for the chiral fields, the rational map ansatz [10]. According to this ansatz, the chiral fields are expressed in a rational map as

\[U(r, z) = \exp(iF(r)\mathbf{n}_R \cdot \mathbf{\tau}), \quad \mathbf{n}_R = \frac{1}{1 + |R(z)|^2} \left(2\text{Re}[R(z)], 2\text{Im}[R(z)], 1 - |R(z)|^2 \right) \] (10)

and \(R(z) \) is the rational map. The complex coordinate \(z \) is given by \(z = \tan(\theta/2)e^{i\phi} \) via stereographic projection. Rational maps are maps from \(\mathbb{C}P(1) \) to \(\mathbb{C}P(1) \) (equivalently, from \(S^2 \) to \(S^2 \)) classified by winding number. In [10], Manton et al. showed that \(B = N \) skyrmions can be well-approximated by rational maps with winding number \(N \). The rational map with winding number \(N \) possesses \((2N + 1)\) complex parameters whose values can be determined by imposing the symmetry of the skyrmion. We shall use this ansatz for the background chiral fields in the CQSM. We employ the explicit forms of \(R(z) \) for various \(B \) proposed in [10] to our analysis. Since the chiral fields in (10) is parameterized by polar coordinates, one can apply the numerical technique developed for \(B = 1 \) to find solutions with higher \(B \).

Field equations for the chiral fields can be obtained by demanding that the total energy in equation (6) be stationary with respect to variation of the profile function \(F(r) \),

\[\frac{\delta}{\delta F(r)} E_{\text{static}} = 0, \]

which gives

\[S(r) \sin F(r) = P(r) \cos F(r), \] (11)

where

\[S(r) = N_c \sum_\mu \left(n_\mu \theta(E_\mu) + \text{sign}(E_\mu)N(E_\mu) \right) \langle \mu|\gamma^0 \delta(|x| - r)|\mu \rangle, \] (12)

\[P(r) = N_c \sum_\mu \left(n_\mu \theta(E_\mu) + \text{sign}(E_\mu)N(E_\mu) \right) \langle \mu|i\gamma^0 \gamma^5 \mathbf{n}_R \cdot \mathbf{\tau} \delta(|x| - r)|\mu \rangle. \] (13)

The procedure to obtain self-consistent solutions of equation (11) is that 1) solve the eigenequation in (4) under an assumed initial profile function \(F_0(r) \), 2) use the resultant eigenfunctions and
eigenvalues to calculate $S(r)$ and $P(r)$, 3) solve equation (11) to obtain a new profile function, 4) repeat 1)–3) until the self-consistency is attained.

The baryon density $b(x)$ is defined by the zeroth component of the baryon current [2];

$$b(x) = \frac{1}{N_c} \langle \bar{\psi} \gamma_0 \psi \rangle = b_{\text{val}}(x) + b_{\text{field}}(x),$$ \hspace{1cm} (14)

where

$$b_{\text{val}}(x) = \sum_i b_{\text{val}}^{(i)}(x) = \frac{1}{N_c} \sum_i \phi_i(x)\phi_i(x)^\dagger,$$

$$b_{\text{field}}(x) = \frac{1}{N_c} \sum_\mu \left[\text{sign}(E_\mu) N(E_\mu) \phi_\mu(x)\phi_\mu(x)^\dagger - \text{sign}(E_\mu^{(0)}) N(E_\mu^{(0)}) \phi_\mu^{(0)}(x)\phi_\mu^{(0)}(x)^\dagger \right].$$ \hspace{1cm} (15)

To examine the shell structure of the quarks, we evaluated the radial density for the ith valence quark $\rho^{(i)}(r)$ in which the angular degrees of freedom are integrated via,

$$\rho^{(i)}(r) = \int d\varphi \int \sin \theta d\theta b_{\text{val}}^{(i)}(r, \theta, \varphi)$$

with the baryon number

$$B = \sum_i \int dr r^2 \rho^{(i)}(r).$$ \hspace{1cm} (17)

3 Results and discussions

Let us first show some results of the spectral flow analysis. For convenience, we shall take

$$F(r) = \begin{cases} -\pi + \pi r/X & \text{for } r < X, \\ 0 & \text{otherwise} \end{cases}$$

as a trial function for the profile function. In Figs. 1, 2, we show the spectral flow with $B = 3, 7$. As can be seen, the number of B positive energy levels are diving into negative energy region and thus we obtain the baryon number B soliton solutions. In Table 1 there are the results for the valence quark levels as well as the vacuum sea contributions. The valence quark spectra show various degenerate patterns depending on the background configuration. The total energy indicates that all the solitons are deep bound states. From (15), we estimated the baryon number density (see Fig. 3). The density inherits the same symmetry as the corresponding skyrmion.

In Fig. 4, we display the valence quark spectra together with the results of $B = 1, 2$ [6]. It is interesting that the results strongly suggest the existence of shell structure for the valence quarks. The spectra show (i) four-fold degeneracy of the ground state labeled by G and various degenerate pattern for excited levels labeled by A_1, A_2, \ldots, (ii) a large energy gap between the ground state G and the first excited level A_1. We suspect that these large degeneracy should contribute to the minimization of the total energy. Note that the small dispersions of the spectra observed here are caused by the finite size effect of the basis. Increasing the size r_{\max} together with increase of the number of the basis, more accurate degeneracy will be attained.

The bunch of the valence spectra caused by symmetry have also been observed within the study of heavier nuclear system. As discussed in Ref. [10], the group theory should predict the level structure for pion fluctuation. However, our problem is more complicated due to the presence of quarks.
Figure 1. Spectral flow of $B = 3$ with the occupation number.

Figure 2. Spectral flow of $B = 7$ with the occupation number.

Table 1. Mass spectra for $B = 1–9, 17$ (in MeV). The data for $B = 1, 2$ are taken from Ref. [6]. The ratio of the mass E_{static} to $B \times E_{\text{static}}^{(B=1)}$ are compared to that of the Skyrme model [10].

<table>
<thead>
<tr>
<th>B</th>
<th>$E_{\text{val}}^{(i)}$</th>
<th>E_{field}</th>
<th>E_{static}</th>
<th>$E_{\text{static}}/BE_{\text{static}}^{(B=1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>173</td>
<td>674</td>
<td>1192</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>173 173</td>
<td>1166 2204</td>
<td>0.92 0.95</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>210 210 210</td>
<td>1633 3522</td>
<td>0.98 0.96</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>144 146 146 146</td>
<td>2628 4378</td>
<td>0.92 0.92</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>123 131 131 139 210</td>
<td>3265 5467</td>
<td>0.92 0.93</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>120 124 150 150 206 206</td>
<td>3740 6603</td>
<td>0.92 0.92</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>115 120 120 120 166 166 166</td>
<td>4554 7478</td>
<td>0.90 0.90</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>97 97 115 120 139 139 203 203</td>
<td>5229 8565</td>
<td>0.90 0.91</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>99 105 105 121 142 142 210 210 210</td>
<td>5700 9742</td>
<td>0.91 0.89</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>83 95 95 95 153 156 157 173 175</td>
<td>10586 18650</td>
<td>0.93 0.88</td>
<td></td>
</tr>
<tr>
<td>5*</td>
<td>157 157 157 232 232</td>
<td>2874 5680</td>
<td>0.95 1.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Baryon number densities.
Let us show how the shell deformation is related to the degeneracy of the spectrum. In general, if the eigenequation

\[H \psi_\mu = E_\mu \psi_\mu \]

is invariant under a symmetric operation \(R \in G \), the equation transforms as

\[RH \psi_\mu = H(R \psi_\mu) = E_\mu \psi_\mu. \]

Thus the states \(\{ \psi_\mu, R \psi_\mu \} \) have the same energy \(E_\mu \). The set of \(d_\mu \) eigenfunctions \(\{ \psi_\mu^{(i)} \} \) \((i = 1, \ldots, d_\mu)\) belonging to a given eigenvalue \(E_\mu \) will provide the basis for an irreducible representation of the group \(G \) of the Hamiltonian [15]:

\[R \psi_\mu^{(i)} = \sum_j \psi_\mu^{(j)} D_{ij}^{(\mu)} (R). \]

The operator \(R \) are constructed as follows. If chiral fields have some particular point group symmetry i.e., \(U(x') = G(a)U(x)G(a)^\dagger \) \((G(a) \in SU(2)_1)\), the Dirac equation is invariant under the rotation

\[x' = a x \]

with

\[x' = (t, x'), \quad a = (1, a), \quad x = (t, x), \]

accompanying the iso-rotation

\[(i \gamma^\mu \partial_\mu - MU(x)) \psi(x) = 0 \Rightarrow (i \gamma^\nu \partial'_\nu - MU(x')) \psi'(x') = 0 \]
and

$$\psi'(x') = S(a) \times G(a) \psi(x), \quad (25)$$

where $S(a)$ satisfies $a^\nu \gamma^\mu = S^{-1} \gamma^\nu S$. The operator R corresponding to this rotation is defined by

$$\psi'(x) \equiv R \psi(x) = S(a) \times G(a) \psi(a^{-1}x). \quad (26)$$

One can easily check that R commutes with the Hamiltonian in (4). Constructing R for each symmetries, one should be able to deduce the degeneracy structure of the spectra occurring in the valence levels. The four-fold degeneracy of the lowest states may be ascribed to the chiral symmetry $SU(2)_L \times SU(2)_R$ of the Hamiltonian. The degenerate structure will be understood if symmetric operators of the Hamiltonian which consist of the angular momentum, spin, isospin and winding number, are explicitly constructed.

In Figs. 5–8, we present the results of $\rho^{(i)}(r)$ for $B = 3, 5, 7$ and 9. The behavior of the density near the origin confirms at least three shells ($\mathcal{G}, \mathcal{A}_1, \mathcal{A}_2$). \mathcal{G} behaves like “S-wave”, and others
like “P-, D-wave” in a hydrogen-like atom. Although the shell structure is emerged, most of the densities are nearly on the same surface and very small (not zero) near the origin. The plateau in the density observed at the center of the nucleus [16] cannot be attained in our solutions. Therefore, one may need to employ the multi-shell ansatz [17] even in the case of light nuclei.

Acknowledgements

We are grateful to N.S. Manton for encouraging us to work on this subject and many useful comments. Also we would like to thank to organizers of the International Conference of "Symmetry in Nonlinear Mathematical Physics", in Kiev, Ukraine, for invitation to participate to it and for their kind accommodations during the Conference.

[3] For detailed reviews of the model see: