Distributed Control System for the Test Interferometer of the ALMA Project

M. Pokorny, M. Brooks, NRAO, Tucson, AZ, USA
B. Glendenning, G. Harris, R. Heald, F. Stauffer, NRAO, Socorro, NM, USA
J. Pisano, NRAO, Charlottesville, VA, USA

NRAO is a facility of the National Science Foundation
operated under cooperative agreement by Associated Universities, Inc.
ALMA

- No fewer than 64 12-meter antennas located at an elevation of 5000 m in Llano de Chajnantor, Chile.
ALMA, continued

- Imaging instrument in all atmospheric windows between 10 mm and 350 µm.
- Array configurations from approximately 150 m to 10 km.
- Spatial resolution of 10 milliarcseconds — 10 times better than the VLA and the HST.
- Able to image sources arcminutes to degrees across at one arcsecond resolution.
ALMA, continued

- Velocity resolution under 0.05 km/s.
- Faster and more flexible imaging instrument than the VLA.
- Largest and most sensitive instrument in the world at millimeter and sub-millimeter wavelengths.
- Point source detection sensitivity 20 times better than the VLA.
ALMA Partners

• USA
 – National Radio Astronomy Observatory (NRAO)

• Europe
 – European Southern Observatory (ESO)
 – Centre National de la Recherche Scientifique
 – Max-Planck-Gesellschaft
 – Netherlands Foundation for Research in Astronomy and Nederlandse Onderzoekschool Voor Astronomie
 – United Kingdom Particle Physics and Astronomy Research Council
Test Interferometer (TI)

- Test instrument being constructed at VLA site using prototype equipment, especially for evaluating and comparing antenna designs.

- TICS: Test Interferometer Control System
TICS Architecture, Physical
TICS Architecture, Logical
ALMA M/C Bus (AMB)

- CAN bus
- 1 Mb/s data rate
- Single master
- Custom bus protocol
- 2000 transactions per second
- Timing event for synchronization
Devices

- Run on antenna bus master computer (ABM), array real-time machine (ARTM) and correlator control computer (CCC), all PPC/VME/VxWorks machines
- Most perform communication with hardware devices
- Device and their properties are ACS distributed objects
Example Devices

- antenna mount system
- helium compressor
- first local oscillator controller
- master clock
- correlator
- laser synthesizer
Timing

- Array time is distributed throughout array
- Initialized to GPS time
- Maintained by local maser clock
- Central reference generator produces array-wide timing events, with a 48 ms period
- Synchronization provided via timing events
- Timing event–associated monitor or control transactions on CAN bus specified relative to timing events
Fine Tuning Synthesizer Device

- component of first and second local oscillators (LO)
- fine adjustment of LO frequency: 10 – 50 MHz
- phase offset capability (for phase switching)
- direct digital synthesizer can produce a wide range of phase/frequency outputs (for fringe tracking)
FTS Module Hardware
FTS Sequence Diagram

LO: Local Oscillator

FTS: FTS

Phase Model Server

H/W

AMS or rcvr

setMultiplierValue(int)

startNewModulation(EpochS)

newPhaseFnCE(

'get phase function'

"load parameters"

"update source"

"restart"

"update delta frequency"
Status

- February ’02: TICS 0.2 release
 - mount control
 - optical pointing telescope
 - holography
- Mid-April ’02: VertexRSI antenna delivery